Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04918
Cited By
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
12 November 2018
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers"
50 / 498 papers shown
Title
The Effects of Mild Over-parameterization on the Optimization Landscape of Shallow ReLU Neural Networks
Itay Safran
Gilad Yehudai
Ohad Shamir
92
34
0
01 Jun 2020
Agnostic Learning of a Single Neuron with Gradient Descent
Spencer Frei
Yuan Cao
Quanquan Gu
MLT
20
59
0
29 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
37
147
0
20 May 2020
Joint Progressive Knowledge Distillation and Unsupervised Domain Adaptation
Le Thanh Nguyen-Meidine
Eric Granger
M. Kiran
Jose Dolz
Louis-Antoine Blais-Morin
22
23
0
16 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
16
0
0
15 May 2020
Provable Training of a ReLU Gate with an Iterative Non-Gradient Algorithm
Sayar Karmakar
Anirbit Mukherjee
14
7
0
08 May 2020
Generalization Error of Generalized Linear Models in High Dimensions
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
AI4CE
19
37
0
01 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Gradients as Features for Deep Representation Learning
Fangzhou Mu
Yingyu Liang
Yin Li
OOD
13
37
0
12 Apr 2020
Blind Adversarial Pruning: Balance Accuracy, Efficiency and Robustness
Haidong Xie
Lixin Qian
Xueshuang Xiang
Naijin Liu
AAML
20
1
0
10 Apr 2020
Backprojection for Training Feedforward Neural Networks in the Input and Feature Spaces
Benyamin Ghojogh
Fakhri Karray
Mark Crowley
12
2
0
05 Apr 2020
Memorizing Gaussians with no over-parameterizaion via gradient decent on neural networks
Amit Daniely
VLM
MLT
10
15
0
28 Mar 2020
Piecewise linear activations substantially shape the loss surfaces of neural networks
Fengxiang He
Bohan Wang
Dacheng Tao
ODL
36
28
0
27 Mar 2020
Dimension Independent Generalization Error by Stochastic Gradient Descent
Xi Chen
Qiang Liu
Xin T. Tong
13
1
0
25 Mar 2020
Neural Kernels Without Tangents
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
25
90
0
04 Mar 2020
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees
Sen Na
Yuwei Luo
Zhuoran Yang
Zhaoran Wang
Mladen Kolar
17
7
0
02 Mar 2020
Convolutional Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
BDL
12
5
0
28 Feb 2020
Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks
Russell Tsuchida
Tim Pearce
Christopher van der Heide
Fred Roosta
M. Gallagher
8
8
0
20 Feb 2020
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
24
76
0
18 Feb 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
29
51
0
16 Feb 2020
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective
Kaixuan Huang
Yuqing Wang
Molei Tao
T. Zhao
MLT
14
97
0
14 Feb 2020
Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function
Lingkai Kong
Molei Tao
12
22
0
14 Feb 2020
A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks
Zixiang Chen
Yuan Cao
Quanquan Gu
Tong Zhang
MLT
35
10
0
10 Feb 2020
Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width
Yu Bai
Ben Krause
Huan Wang
Caiming Xiong
R. Socher
22
22
0
10 Feb 2020
Distribution Approximation and Statistical Estimation Guarantees of Generative Adversarial Networks
Minshuo Chen
Wenjing Liao
H. Zha
Tuo Zhao
26
15
0
10 Feb 2020
Quasi-Equivalence of Width and Depth of Neural Networks
Fenglei Fan
Rongjie Lai
Ge Wang
22
11
0
06 Feb 2020
Function approximation by neural nets in the mean-field regime: Entropic regularization and controlled McKean-Vlasov dynamics
Belinda Tzen
Maxim Raginsky
18
17
0
05 Feb 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
64
271
0
03 Feb 2020
Identifying Mislabeled Data using the Area Under the Margin Ranking
Geoff Pleiss
Tianyi Zhang
Ethan R. Elenberg
Kilian Q. Weinberger
NoLa
43
261
0
28 Jan 2020
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide Random Network: A Geometrical Perspective
S. Amari
27
12
0
20 Jan 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
Kevin Maik Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
31
350
0
18 Jan 2020
Learning a Single Neuron with Gradient Methods
Gilad Yehudai
Ohad Shamir
MLT
11
63
0
15 Jan 2020
On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks
Michela Paganini
Jessica Zosa Forde
19
19
0
14 Jan 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
A. Shevchenko
Marco Mondelli
27
37
0
20 Dec 2019
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation
Pan Xu
Quanquan Gu
23
66
0
10 Dec 2019
How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?
Zixiang Chen
Yuan Cao
Difan Zou
Quanquan Gu
22
122
0
27 Nov 2019
Convex Formulation of Overparameterized Deep Neural Networks
Cong Fang
Yihong Gu
Weizhong Zhang
Tong Zhang
34
28
0
18 Nov 2019
Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks
Yuan Cao
Quanquan Gu
MLT
20
19
0
12 Nov 2019
Learning Boolean Circuits with Neural Networks
Eran Malach
Shai Shalev-Shwartz
9
4
0
25 Oct 2019
Over Parameterized Two-level Neural Networks Can Learn Near Optimal Feature Representations
Cong Fang
Hanze Dong
Tong Zhang
17
18
0
25 Oct 2019
Policy Optimization for
H
2
\mathcal{H}_2
H
2
Linear Control with
H
∞
\mathcal{H}_\infty
H
∞
Robustness Guarantee: Implicit Regularization and Global Convergence
Kaipeng Zhang
Bin Hu
Tamer Basar
24
119
0
21 Oct 2019
Neural tangent kernels, transportation mappings, and universal approximation
Ziwei Ji
Matus Telgarsky
Ruicheng Xian
16
39
0
15 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Machine Learning for Prediction with Missing Dynamics
J. Harlim
Shixiao W. Jiang
Senwei Liang
Haizhao Yang
AI4CE
14
60
0
13 Oct 2019
Nearly Minimal Over-Parametrization of Shallow Neural Networks
Armin Eftekhari
Chaehwan Song
V. Cevher
21
1
0
09 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Environmental drivers of systematicity and generalization in a situated agent
Felix Hill
Andrew Kyle Lampinen
R. Schneider
S. Clark
M. Botvinick
James L. McClelland
Adam Santoro
OOD
9
103
0
01 Oct 2019
Previous
1
2
3
...
10
7
8
9
Next