Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04918
Cited By
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
12 November 2018
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers"
48 / 498 papers shown
Title
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
Consensus-based Interpretable Deep Neural Networks with Application to Mortality Prediction
Shaeke Salman
S. N. Payrovnaziri
Xiuwen Liu
Pablo Rengifo-Moreno
Zhe He
19
0
0
14 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Accelerated Target Updates for Q-learning
Bowen Weng
Huaqing Xiong
Wei Zhang
6
0
0
07 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
905
0
26 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Yifan Jiang
Tom Goldstein
ODL
24
103
0
15 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
35
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
19
121
0
08 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
26
181
0
01 Apr 2019
Adversarial Robustness vs Model Compression, or Both?
Shaokai Ye
Kaidi Xu
Sijia Liu
Jan-Henrik Lambrechts
Huan Zhang
Aojun Zhou
Kaisheng Ma
Yanzhi Wang
Xue Lin
AAML
17
163
0
29 Mar 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
23
203
0
21 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor
τ
τ
τ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
32
8
0
17 Mar 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
32
3
0
12 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
37
61
0
06 Mar 2019
Implicit Regularization in Over-parameterized Neural Networks
M. Kubo
Ryotaro Banno
Hidetaka Manabe
Masataka Minoji
19
23
0
05 Mar 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
11
282
0
13 Feb 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
17
309
0
13 Feb 2019
Identity Crisis: Memorization and Generalization under Extreme Overparameterization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Michael C. Mozer
Y. Singer
14
88
0
13 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
19
319
0
12 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
24
72
0
07 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
25
155
0
04 Feb 2019
Can SGD Learn Recurrent Neural Networks with Provable Generalization?
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
LRM
11
57
0
04 Feb 2019
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning
Jian Li
Xuanyuan Luo
Mingda Qiao
21
85
0
02 Feb 2019
Compressing GANs using Knowledge Distillation
Angeline Aguinaldo
Ping Yeh-Chiang
Alex Gain
Ameya D. Patil
Kolten Pearson
S. Feizi
GAN
11
83
0
01 Feb 2019
Depth creates no more spurious local minima
Li Zhang
10
19
0
28 Jan 2019
Generalisation dynamics of online learning in over-parameterised neural networks
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
33
14
0
25 Jan 2019
Orthogonal Statistical Learning
Dylan J. Foster
Vasilis Syrgkanis
16
167
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
On Connected Sublevel Sets in Deep Learning
Quynh N. Nguyen
19
102
0
22 Jan 2019
Overfitting Mechanism and Avoidance in Deep Neural Networks
Shaeke Salman
Xiuwen Liu
9
138
0
19 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
23
595
0
01 Jan 2019
Greedy Layerwise Learning Can Scale to ImageNet
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
9
180
0
29 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
6
176
0
25 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
46
806
0
19 Dec 2018
ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks
Shuxuan Guo
J. Álvarez
Mathieu Salzmann
21
77
0
26 Nov 2018
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
22
0
22 Nov 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
27
1,447
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,122
0
09 Nov 2018
ReLeQ: A Reinforcement Learning Approach for Deep Quantization of Neural Networks
Ahmed T. Elthakeb
Prannoy Pilligundla
Fatemehsadat Mireshghallah
Amir Yazdanbakhsh
H. Esmaeilzadeh
MQ
55
68
0
05 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
23
191
0
29 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
36
57
0
16 Oct 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
29
130
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
23
245
0
12 Oct 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
27
78
0
13 Jun 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
23
544
0
18 Dec 2017
Previous
1
2
3
...
10
8
9