ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04551
  4. Cited By
Learning Latent Dynamics for Planning from Pixels

Learning Latent Dynamics for Planning from Pixels

12 November 2018
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
    BDL
ArXivPDFHTML

Papers citing "Learning Latent Dynamics for Planning from Pixels"

48 / 397 papers shown
Title
q-VAE for Disentangled Representation Learning and Latent Dynamical
  Systems
q-VAE for Disentangled Representation Learning and Latent Dynamical Systems
Taisuke Kobayashis
BDL
DRL
22
17
0
04 Mar 2020
Predictive Coding for Locally-Linear Control
Predictive Coding for Locally-Linear Control
Rui Shu
Tung D. Nguyen
Yinlam Chow
Tu Pham
Khoat Than
Mohammad Ghavamzadeh
Stefano Ermon
Hung Bui
OffRL
BDL
42
24
0
02 Mar 2020
Reinforcement Learning through Active Inference
Reinforcement Learning through Active Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
26
69
0
28 Feb 2020
Plannable Approximations to MDP Homomorphisms: Equivariance under
  Actions
Plannable Approximations to MDP Homomorphisms: Equivariance under Actions
Elise van der Pol
Thomas Kipf
F. Oliehoek
Max Welling
22
77
0
27 Feb 2020
From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the
  World of AI
From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI
S. Risi
Mike Preuss
35
56
0
24 Feb 2020
Stochastic Latent Residual Video Prediction
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
28
159
0
21 Feb 2020
Disentangling Controllable Object through Video Prediction Improves
  Visual Reinforcement Learning
Disentangling Controllable Object through Video Prediction Improves Visual Reinforcement Learning
Yuanyi Zhong
Alex Schwing
Jian Peng
DRL
15
5
0
21 Feb 2020
Causally Correct Partial Models for Reinforcement Learning
Causally Correct Partial Models for Reinforcement Learning
Danilo Jimenez Rezende
Ivo Danihelka
George Papamakarios
Nan Rosemary Ke
Ray Jiang
...
Jane X. Wang
Jovana Mitrović
F. Besse
Ioannis Antonoglou
Lars Buesing
AI4TS
24
32
0
07 Feb 2020
Ready Policy One: World Building Through Active Learning
Ready Policy One: World Building Through Active Learning
Philip J. Ball
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
OffRL
32
49
0
07 Feb 2020
Q-Learning in enormous action spaces via amortized approximate
  maximization
Q-Learning in enormous action spaces via amortized approximate maximization
T. Wiele
David Warde-Farley
A. Mnih
Volodymyr Mnih
29
60
0
22 Jan 2020
Learning Predictive Models From Observation and Interaction
Learning Predictive Models From Observation and Interaction
Karl Schmeckpeper
Annie Xie
Oleh Rybkin
Stephen Tian
Kostas Daniilidis
Sergey Levine
Chelsea Finn
DRL
33
60
0
30 Dec 2019
Deep Innovation Protection: Confronting the Credit Assignment Problem in
  Training Heterogeneous Neural Architectures
Deep Innovation Protection: Confronting the Credit Assignment Problem in Training Heterogeneous Neural Architectures
S. Risi
Kenneth O. Stanley
30
4
0
29 Dec 2019
Variational Recurrent Models for Solving Partially Observable Control
  Tasks
Variational Recurrent Models for Solving Partially Observable Control Tasks
Dongqi Han
Kenji Doya
Jun Tani
DRL
OffRL
21
59
0
23 Dec 2019
Interestingness Elements for Explainable Reinforcement Learning:
  Understanding Agents' Capabilities and Limitations
Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents' Capabilities and Limitations
Pedro Sequeira
Melinda Gervasio
19
104
0
19 Dec 2019
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human
  Videos
AVID: Learning Multi-Stage Tasks via Pixel-Level Translation of Human Videos
Laura M. Smith
Nikita Dhawan
Marvin Zhang
Pieter Abbeel
Sergey Levine
41
156
0
10 Dec 2019
Policy Optimization Reinforcement Learning with Entropy Regularization
Policy Optimization Reinforcement Learning with Entropy Regularization
Jingbin Liu
Xinyang Gu
Shuai Liu
25
4
0
02 Dec 2019
Scaling active inference
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
Attention-Privileged Reinforcement Learning
Attention-Privileged Reinforcement Learning
Sasha Salter
Dushyant Rao
Markus Wulfmeier
R. Hadsell
Ingmar Posner
23
8
0
19 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
22
12
0
19 Nov 2019
Learning Representations in Reinforcement Learning:An Information
  Bottleneck Approach
Learning Representations in Reinforcement Learning:An Information Bottleneck Approach
Yingjun Pei
Xinwen Hou
SSL
39
10
0
12 Nov 2019
High Fidelity Video Prediction with Large Stochastic Recurrent Neural
  Networks
High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks
Ruben Villegas
Arkanath Pathak
Harini Kannan
D. Erhan
Quoc V. Le
Honglak Lee
VGen
22
136
0
05 Nov 2019
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Mikael Henaff
OffRL
22
31
0
01 Nov 2019
Learning to Predict Without Looking Ahead: World Models Without Forward
  Prediction
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
C. Freeman
Luke Metz
David R Ha
33
35
0
29 Oct 2019
Learning Compositional Koopman Operators for Model-Based Control
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
32
113
0
18 Oct 2019
Regularizing Model-Based Planning with Energy-Based Models
Regularizing Model-Based Planning with Energy-Based Models
Rinu Boney
Arno Solin
Alexander Ilin
6
18
0
12 Oct 2019
Imagined Value Gradients: Model-Based Policy Optimization with
  Transferable Latent Dynamics Models
Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models
Arunkumar Byravan
Jost Tobias Springenberg
A. Abdolmaleki
Roland Hafner
Michael Neunert
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
11
41
0
09 Oct 2019
Object-centric Forward Modeling for Model Predictive Control
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye
Dhiraj Gandhi
Abhinav Gupta
Shubham Tulsiani
LM&Ro
OCL
12
38
0
08 Oct 2019
Improving Sample Efficiency in Model-Free Reinforcement Learning from
  Images
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images
Denis Yarats
Amy Zhang
Ilya Kostrikov
Brandon Amos
Joelle Pineau
Rob Fergus
DRL
47
439
0
02 Oct 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
216
0
30 Sep 2019
The Differentiable Cross-Entropy Method
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
34
54
0
27 Sep 2019
Deterministic Value-Policy Gradients
Deterministic Value-Policy Gradients
Qingpeng Cai
L. Pan
Pingzhong Tang
29
1
0
09 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
25
53
0
25 Aug 2019
Towards Model-based Reinforcement Learning for Industry-near
  Environments
Towards Model-based Reinforcement Learning for Industry-near Environments
Per-Arne Andersen
M. G. Olsen
Ole-Christoffer Granmo
OffRL
DRL
22
4
0
27 Jul 2019
Rapid trial-and-error learning with simulation supports flexible tool
  use and physical reasoning
Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning
Kelsey R. Allen
Kevin A. Smith
J. Tenenbaum
LRM
31
108
0
22 Jul 2019
Data Efficient Reinforcement Learning for Legged Robots
Data Efficient Reinforcement Learning for Legged Robots
Yuxiang Yang
Ken Caluwaerts
Atil Iscen
Tingnan Zhang
Jie Tan
Vikas Sindhwani
28
139
0
08 Jul 2019
Variational Inference MPC for Bayesian Model-based Reinforcement
  Learning
Variational Inference MPC for Bayesian Model-based Reinforcement Learning
Masashi Okada
T. Taniguchi
38
73
0
08 Jul 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
33
372
0
01 Jul 2019
Sequential Neural Processes
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
40
81
0
24 Jun 2019
Shaping Belief States with Generative Environment Models for RL
Shaping Belief States with Generative Environment Models for RL
Karol Gregor
Danilo Jimenez Rezende
F. Besse
Yan Wu
Hamza Merzic
Aaron van den Oord
OffRL
AI4CE
25
118
0
21 Jun 2019
Unsupervised Learning of Object Structure and Dynamics from Videos
Unsupervised Learning of Object Structure and Dynamics from Videos
Matthias Minderer
Chen Sun
Ruben Villegas
Forrester Cole
Kevin Patrick Murphy
Honglak Lee
27
150
0
19 Jun 2019
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy
  Policies
Tight Regret Bounds for Model-Based Reinforcement Learning with Greedy Policies
Yonathan Efroni
Nadav Merlis
Mohammad Ghavamzadeh
Shie Mannor
OffRL
24
68
0
27 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGen
PINN
21
45
0
27 May 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
11
117
0
22 May 2019
DAC: The Double Actor-Critic Architecture for Learning Options
DAC: The Double Actor-Critic Architecture for Learning Options
Shangtong Zhang
Shimon Whiteson
30
72
0
29 Apr 2019
Keyframing the Future: Keyframe Discovery for Visual Prediction and
  Planning
Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning
Karl Pertsch
Oleh Rybkin
Jingyun Yang
Shenghao Zhou
Konstantinos G. Derpanis
Kostas Daniilidis
Joseph J. Lim
Andrew Jaegle
VGen
45
24
0
11 Apr 2019
Self-Adapting Goals Allow Transfer of Predictive Models to New Tasks
Self-Adapting Goals Allow Transfer of Predictive Models to New Tasks
K. Ellefsen
J. Tørresen
22
1
0
04 Apr 2019
Deep Variational Koopman Models: Inferring Koopman Observations for
  Uncertainty-Aware Dynamics Modeling and Control
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
21
45
0
26 Feb 2019
VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for
  Model-based Control
VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for Model-based Control
Xingxing Liang
Qi Wang
Yanghe Feng
Zhong Liu
Jincai Huang
29
5
0
24 Dec 2018
Previous
12345678