Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.04504
Cited By
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
11 November 2018
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient"
44 / 44 papers shown
Title
Staying Alive: Online Neural Network Maintenance and Systemic Drift
Joshua Edward Hammond
Tyler Soderstrom
Brian A. Korgel
Michael Baldea
48
0
0
22 Mar 2025
Low Rank Field-Weighted Factorization Machines for Low Latency Item Recommendation
Alicia Y. Tsai
Michael Viderman
Anahita Hosseini
Zemin Zhang
Ariel Raviv
Lichan Hong
29
0
0
22 Jul 2024
Bayesian Online Natural Gradient (BONG)
Matt Jones
Peter Chang
Kevin P. Murphy
BDL
50
4
0
30 May 2024
Favour: FAst Variance Operator for Uncertainty Rating
Thomas Dybdahl Ahle
Sahar Karimi
Peter Tak Peter Tang
BDL
29
0
0
21 Nov 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Low-rank extended Kalman filtering for online learning of neural networks from streaming data
Peter Chang
Gerardo Duran-Martín
Alexander Y. Shestopaloff
Matt Jones
Kevin P. Murphy
BDL
46
17
0
31 May 2023
FineMorphs: Affine-diffeomorphic sequences for regression
Michele Lohr
L. Younes
31
0
0
26 May 2023
Natural Gradient Hybrid Variational Inference with Application to Deep Mixed Models
Weiben Zhang
M. Smith
Worapree Maneesoonthorn
Rubén Loaiza-Maya
16
1
0
27 Feb 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
27
19
0
26 Feb 2023
Probabilistic Circuits That Know What They Don't Know
Fabrizio G. Ventola
Steven Braun
Zhongjie Yu
Martin Mundt
Kristian Kersting
UQCV
TPM
34
7
0
13 Feb 2023
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
46
7
0
01 Dec 2022
On the detrimental effect of invariances in the likelihood for variational inference
Richard Kurle
R. Herbrich
Tim Januschowski
Bernie Wang
Jan Gasthaus
35
9
0
15 Sep 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
42
5
0
22 Jun 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
33
14
0
28 Feb 2022
Implicit copula variational inference
M. Smith
Rubén Loaiza-Maya
16
7
0
18 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
29
58
0
03 Nov 2021
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
47
2
0
16 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
39
9
0
08 Oct 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
68
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,112
0
07 Jul 2021
Quantum Speedup of Natural Gradient for Variational Bayes
A. Lopatnikova
Minh-Ngoc Tran
BDL
26
3
0
10 Jun 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCV
BDL
63
17
0
30 May 2021
Structured Dropout Variational Inference for Bayesian Neural Networks
S. Nguyen
Duong Nguyen
Khai Nguyen
Khoat Than
Hung Bui
Nhat Ho
BDL
DRL
8
7
0
16 Feb 2021
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark Schmidt
31
29
0
15 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDL
UQCV
22
22
0
04 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
56
1,883
0
12 Nov 2020
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCV
BDL
31
84
0
28 Oct 2020
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
19
4
0
21 Jul 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
38
46
0
20 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
31
45
0
07 Feb 2020
Kernelized Wasserstein Natural Gradient
Michael Arbel
Arthur Gretton
Wuchen Li
Guido Montúfar
26
22
0
21 Oct 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
19
8
0
06 Sep 2019
Convergence Rates of Variational Inference in Sparse Deep Learning
Badr-Eddine Chérief-Abdellatif
BDL
14
38
0
09 Aug 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
11
69
0
07 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
23
209
0
29 May 2019
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
12
5
0
15 Apr 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
19
6
0
11 Feb 2019
Eigenvalue Corrected Noisy Natural Gradient
Juhan Bae
Guodong Zhang
Roger C. Grosse
28
16
0
30 Nov 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Lifelong Generative Modeling
Jason Ramapuram
Magda Gregorova
Alexandros Kalousis
BDL
CLL
24
119
0
27 May 2017
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
75
0
07 Oct 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1