Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03195
Cited By
v1
v2 (latest)
Performance of Johnson-Lindenstrauss Transform for k-Means and k-Medians Clustering
8 November 2018
K. Makarychev
Kaizhu Huang
Jeyarajan Thiyagalingam
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Performance of Johnson-Lindenstrauss Transform for k-Means and k-Medians Clustering"
50 / 66 papers shown
Title
Randomized Dimensionality Reduction for Euclidean Maximization and Diversity Measures
Jie Gao
Rajesh Jayaram
Benedikt Kolbe
Shay Sapir
Chris Schwiegelshohn
Sandeep Silwal
Erik Waingarten
15
0
0
30 May 2025
Beyond Worst-Case Dimensionality Reduction for Sparse Vectors
Sandeep Silwal
David P. Woodruff
Qiuyi Zhang
100
0
0
27 Feb 2025
A Tight VC-Dimension Analysis of Clustering Coresets with Applications
Vincent Cohen-Addad
Andrew Draganov
Matteo Russo
David Saulpic
Chris Schwiegelshohn
66
2
0
11 Jan 2025
Making Old Things New: A Unified Algorithm for Differentially Private Clustering
Max Dupré la Tour
Monika Henzinger
David Saulpic
FedML
65
2
0
17 Jun 2024
Contrastive Explainable Clustering with Differential Privacy
Dung Nguyen
Ariel Vetzler
Sarit Kraus
A. Vullikanti
74
1
0
07 Jun 2024
Coresets for Multiple
ℓ
p
\ell_p
ℓ
p
Regression
David P. Woodruff
T. Yasuda
52
0
0
04 Jun 2024
Approximate Algorithms For
k
k
k
-Sparse Wasserstein Barycenter With Outliers
Qingyuan Yang
Hu Ding
55
3
0
20 Apr 2024
Node Similarities under Random Projections: Limits and Pathological Cases
Tvrtko Tadić
Cassiano Becker
Jennifer Neville
96
0
0
15 Apr 2024
Settling Time vs. Accuracy Tradeoffs for Clustering Big Data
Andrew Draganov
David Saulpic
Chris Schwiegelshohn
47
5
0
02 Apr 2024
Efficiently Computing Similarities to Private Datasets
A. Backurs
Zinan Lin
S. Mahabadi
Sandeep Silwal
Jakub Tarnawski
88
6
0
13 Mar 2024
A Scalable Algorithm for Individually Fair K-means Clustering
M. Bateni
Vincent Cohen-Addad
Alessandro Epasto
Silvio Lattanzi
91
7
0
09 Feb 2024
On Robust Wasserstein Barycenter: The Model and Algorithm
Xu Wang
Jiawei Huang
Qing Yang
Jinpeng Zhang
50
1
0
25 Dec 2023
Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming
Gregory Dexter
P. Drineas
David P. Woodruff
T. Yasuda
35
0
0
29 Oct 2023
Simple, Scalable and Effective Clustering via One-Dimensional Projections
Moses Charikar
Monika Henzinger
Lunjia Hu
Maximilian Vötsch
Erik Waingarten
65
2
0
25 Oct 2023
Fast and Simple Spectral Clustering in Theory and Practice
Peter Macgregor
80
6
0
17 Oct 2023
On Generalization Bounds for Projective Clustering
Maria Sofia Bucarelli
Matilde Fjeldso Larsen
Chris Schwiegelshohn
M. Toftrup
46
3
0
13 Oct 2023
Differential Privacy for Clustering Under Continual Observation
Max Dupré la Tour
Monika Henzinger
David Saulpic
50
1
0
07 Jul 2023
Adversarially robust clustering with optimality guarantees
Soham Jana
Kun Yang
Sanjeev R. Kulkarni
AAML
51
2
0
16 Jun 2023
Approximation Algorithms for Fair Range Clustering
S. S. Hotegni
S. Mahabadi
A. Vakilian
57
19
0
11 Jun 2023
Learning the Positions in CountSketch
Yi Li
Honghao Lin
Simin Liu
A. Vakilian
David P. Woodruff
84
19
0
11 Jun 2023
Randomly Projected Convex Clustering Model: Motivation, Realization, and Cluster Recovery Guarantees
Ziwen Wang
Yancheng Yuan
Jiaming Ma
T. Zeng
Defeng Sun
32
3
0
29 Mar 2023
Exact Non-Oblivious Performance of Rademacher Random Embeddings
Maciej Skorski
Alessandro Temperoni
112
0
0
21 Mar 2023
Replicable Clustering
Hossein Esfandiari
Amin Karbasi
Vahab Mirrokni
Grigoris Velegkas
Felix Y. Zhou
91
13
0
20 Feb 2023
Feature Affinity Assisted Knowledge Distillation and Quantization of Deep Neural Networks on Label-Free Data
Zhijian Li
Biao Yang
Penghang Yin
Y. Qi
Jack Xin
MQ
30
2
0
10 Feb 2023
Cheeger Inequalities for Directed Graphs and Hypergraphs Using Reweighted Eigenvalues
L. Lau
Kam Chuen Tung
Robert Wang
81
7
0
17 Nov 2022
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
86
1
0
01 Oct 2022
Socially Fair Center-based and Linear Subspace Clustering
Sruthi Gorantla
Kishen N. Gowda
Amit Deshpande
Anand Louis
65
2
0
22 Aug 2022
An Empirical Evaluation of
k
k
k
-Means Coresets
Chris Schwiegelshohn
Omar Ali Sheikh-Omar
39
11
0
03 Jul 2022
k
k
k
-Median Clustering via Metric Embedding: Towards Better Initialization with Differential Privacy
Chenglin Fan
Ping Li
Xiaoyun Li
83
6
0
26 Jun 2022
Scalable Differentially Private Clustering via Hierarchically Separated Trees
Vincent Cohen-Addad
Alessandro Epasto
Silvio Lattanzi
Vahab Mirrokni
Andrés Muñoz
David Saulpic
Chris Schwiegelshohn
Sergei Vassilvitskii
FedML
56
16
0
17 Jun 2022
Hashing Learning with Hyper-Class Representation
Shi-bo Zhang
Jiaye Li
62
1
0
06 Jun 2022
Improved Approximations for Euclidean
k
k
k
-means and
k
k
k
-median, via Nested Quasi-Independent Sets
Vincent Cohen-Addad
Hossein Esfandiari
Vahab Mirrokni
Shyam Narayanan
95
37
0
11 Apr 2022
Towards Optimal Lower Bounds for k-median and k-means Coresets
Vincent Cohen-Addad
Kasper Green Larsen
David Saulpic
Chris Schwiegelshohn
56
51
0
25 Feb 2022
Robust and Provable Guarantees for Sparse Random Embeddings
Maciej Skorski
Alessandro Temperoni
Martin Theobald
86
2
0
22 Feb 2022
Explainable k-means. Don't be greedy, plant bigger trees!
K. Makarychev
Liren Shan
52
23
0
04 Nov 2021
Learning-Augmented
k
k
k
-means Clustering
Jon Ergun
Zhili Feng
Sandeep Silwal
David P. Woodruff
Samson Zhou
67
34
0
27 Oct 2021
Dimensionality Reduction for Wasserstein Barycenter
Zachary Izzo
Sandeep Silwal
Samson Zhou
71
18
0
18 Oct 2021
Probabilistic methods for approximate archetypal analysis
Ruijian Han
Braxton Osting
Dong Wang
Yiming Xu
49
6
0
12 Aug 2021
Randomized Dimensionality Reduction for Facility Location and Single-Linkage Clustering
Shyam Narayanan
Sandeep Silwal
Piotr Indyk
Or Zamir
37
12
0
05 Jul 2021
Near-optimal Algorithms for Explainable k-Medians and k-Means
K. Makarychev
Liren Shan
53
27
0
02 Jul 2021
Near-Optimal Explainable
k
k
k
-Means for All Dimensions
Moses Charikar
Lunjia Hu
57
18
0
29 Jun 2021
Locally Private
k
k
k
-Means Clustering with Constant Multiplicative Approximation and Near-Optimal Additive Error
Anamay Chaturvedi
Matthew D. Jones
Huy Le Nguyen
21
4
0
31 May 2021
Locally Private k-Means in One Round
Alisa Chang
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
91
32
0
20 Apr 2021
Confidence-Optimal Random Embeddings
Maciej Skorski
14
0
0
06 Apr 2021
Approximation Algorithms for Socially Fair Clustering
Yury Makarychev
A. Vakilian
78
50
0
03 Mar 2021
An Introduction to Johnson-Lindenstrauss Transforms
Casper Benjamin Freksen
8
17
0
28 Feb 2021
Communication-efficient k-Means for Edge-based Machine Learning
Hanlin Lu
T. He
Shiqiang Wang
Changchang Liu
M. Mahdavi
V. Narayanan
Kevin S. Chan
Stephen Pasteris
42
0
0
08 Feb 2021
Fast and Accurate
k
k
k
-means++ via Rejection Sampling
Vincent Cohen-Addad
Silvio Lattanzi
A. Norouzi-Fard
C. Sohler
O. Svensson
VLM
63
20
0
22 Dec 2020
Hardness of Approximation of Euclidean
k
k
k
-Median
Anup Bhattacharya
Dishant Goyal
Ragesh Jaiswal
34
9
0
09 Nov 2020
Improved Guarantees for k-means++ and k-means++ Parallel
K. Makarychev
Aravind Reddy
Liren Shan
DRL
80
24
0
27 Oct 2020
1
2
Next