ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09734
37
30

Locally Private k-Means in One Round

20 April 2021
Alisa Chang
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
ArXivPDFHTML
Abstract

We provide an approximation algorithm for k-means clustering in the one-round (aka non-interactive) local model of differential privacy (DP). This algorithm achieves an approximation ratio arbitrarily close to the best non private approximation algorithm, improving upon previously known algorithms that only guarantee large (constant) approximation ratios. Furthermore, this is the first constant-factor approximation algorithm for k-means that requires only one round of communication in the local DP model, positively resolving an open question of Stemmer (SODA 2020). Our algorithmic framework is quite flexible; we demonstrate this by showing that it also yields a similar near-optimal approximation algorithm in the (one-round) shuffle DP model.

View on arXiv
Comments on this paper