38
17

Dimensionality Reduction for Wasserstein Barycenter

Abstract

The Wasserstein barycenter is a geometric construct which captures the notion of centrality among probability distributions, and which has found many applications in machine learning. However, most algorithms for finding even an approximate barycenter suffer an exponential dependence on the dimension dd of the underlying space of the distributions. In order to cope with this "curse of dimensionality," we study dimensionality reduction techniques for the Wasserstein barycenter problem. When the barycenter is restricted to support of size nn, we show that randomized dimensionality reduction can be used to map the problem to a space of dimension O(logn)O(\log n) independent of both dd and kk, and that \emph{any} solution found in the reduced dimension will have its cost preserved up to arbitrary small error in the original space. We provide matching upper and lower bounds on the size of the reduced dimension, showing that our methods are optimal up to constant factors. We also provide a coreset construction for the Wasserstein barycenter problem that significantly decreases the number of input distributions. The coresets can be used in conjunction with random projections and thus further improve computation time. Lastly, our experimental results validate the speedup provided by dimensionality reduction while maintaining solution quality.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.