ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00401
  4. Cited By
Excessive Invariance Causes Adversarial Vulnerability

Excessive Invariance Causes Adversarial Vulnerability

1 November 2018
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
    AAML
ArXivPDFHTML

Papers citing "Excessive Invariance Causes Adversarial Vulnerability"

47 / 47 papers shown
Title
FedAT: Federated Adversarial Training for Distributed Insider Threat
  Detection
FedAT: Federated Adversarial Training for Distributed Insider Threat Detection
R. Gayathri
Atul Sajjanhar
Md Palash Uddin
Yong Xiang
FedML
23
0
0
19 Sep 2024
Input Space Mode Connectivity in Deep Neural Networks
Input Space Mode Connectivity in Deep Neural Networks
Jakub Vrabel
Ori Shem-Ur
Yaron Oz
David Krueger
56
1
0
09 Sep 2024
Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations
Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations
Justin Deschenaux
Igor Krawczuk
Grigorios G. Chrysos
V. Cevher
DiffM
52
3
0
29 May 2024
Training Image Derivatives: Increased Accuracy and Universal Robustness
Training Image Derivatives: Increased Accuracy and Universal Robustness
V. Avrutskiy
46
0
0
21 Oct 2023
Enhancing Multiple Reliability Measures via Nuisance-extended
  Information Bottleneck
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
44
0
0
24 Mar 2023
Training Invertible Neural Networks as Autoencoders
Training Invertible Neural Networks as Autoencoders
The-Gia Leo Nguyen
Lynton Ardizzone
Ullrich Kothe
BDL
DRL
SSL
30
9
0
20 Mar 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial
  Robustness
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
32
8
0
17 Mar 2023
Transformed Distribution Matching for Missing Value Imputation
Transformed Distribution Matching for Missing Value Imputation
He Zhao
Ke Sun
Amir Dezfouli
Edwin V. Bonilla
34
19
0
20 Feb 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
27
2
0
27 Jan 2023
Differentiable Dictionary Search: Integrating Linear Mixing with Deep
  Non-Linear Modelling for Audio Source Separation
Differentiable Dictionary Search: Integrating Linear Mixing with Deep Non-Linear Modelling for Audio Source Separation
Lukávs Samuel Marták
Rainer Kelz
Gerhard Widmer
23
1
0
28 Nov 2022
Mechanistic Mode Connectivity
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
32
45
0
15 Nov 2022
In What Ways Are Deep Neural Networks Invariant and How Should We
  Measure This?
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
51
8
0
07 Oct 2022
Bispectral Neural Networks
Bispectral Neural Networks
Sophia Sanborn
Christian Shewmake
Bruno A. Olshausen
Christopher Hillar
37
12
0
07 Sep 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
On the Limitations of Stochastic Pre-processing Defenses
On the Limitations of Stochastic Pre-processing Defenses
Yue Gao
Ilia Shumailov
Kassem Fawaz
Nicolas Papernot
AAML
SILM
47
30
0
19 Jun 2022
Exact Feature Collisions in Neural Networks
Exact Feature Collisions in Neural Networks
Utku Ozbulak
Manvel Gasparyan
Shodhan Rao
W. D. Neve
Arnout Van Messem
AAML
27
1
0
31 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
49
318
0
06 Apr 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
72
0
26 Mar 2022
Fourier-Based Augmentations for Improved Robustness and Uncertainty
  Calibration
Fourier-Based Augmentations for Improved Robustness and Uncertainty Calibration
Ryan Soklaski
Michael Yee
Theodoros Tsiligkaridis
AAML
19
14
0
24 Feb 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
39
7
0
29 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network
  Classifiers
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wei Cao
Zhenguo Li
UQCV
AAML
41
19
0
07 Dec 2021
Decomposing Representations for Deterministic Uncertainty Estimation
Decomposing Representations for Deterministic Uncertainty Estimation
Haiwen Huang
Joost R. van Amersfoort
Y. Gal
UQCV
OOD
UD
32
1
0
01 Dec 2021
Calibrated Adversarial Training
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
56
3
0
01 Oct 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
31
236
0
01 Aug 2021
Can contrastive learning avoid shortcut solutions?
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Conditional Invertible Neural Networks for Diverse Image-to-Image
  Translation
Conditional Invertible Neural Networks for Diverse Image-to-Image Translation
Lynton Ardizzone
Jakob Kruse
Carsten T. Lüth
Niels Bracher
Carsten Rother
Ullrich Kothe
21
31
0
05 May 2021
DiPSeN: Differentially Private Self-normalizing Neural Networks For
  Adversarial Robustness in Federated Learning
DiPSeN: Differentially Private Self-normalizing Neural Networks For Adversarial Robustness in Federated Learning
Olakunle Ibitoye
M. O. Shafiq
Ashraf Matrawy
FedML
28
18
0
08 Jan 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
InfoBERT: Improving Robustness of Language Models from An Information
  Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
Wei Ping
Shuohang Wang
Yu Cheng
Zhe Gan
R. Jia
Bo-wen Li
Jingjing Liu
AAML
46
113
0
05 Oct 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
417
0
16 Jul 2020
Seeing eye-to-eye? A comparison of object recognition performance in
  humans and deep convolutional neural networks under image manipulation
Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation
Leonard E. van Dyck
W. Gruber
27
3
0
13 Jul 2020
How benign is benign overfitting?
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
23
57
0
08 Jul 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
37
437
0
17 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Going in circles is the way forward: the role of recurrence in visual
  inference
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
82
0
26 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
23
230
0
24 Jul 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
33
204
0
06 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
27
63
0
03 Jun 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRL
OOD
28
198
0
24 May 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial
  Robustness
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
22
46
0
25 Mar 2019
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
25
618
0
02 Nov 2018
Adversarial examples from computational constraints
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
65
230
0
25 May 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
185
302
0
21 May 2018
1