ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08278
  4. Cited By
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences

Interpolating between Optimal Transport and MMD using Sinkhorn Divergences

18 October 2018
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
    OT
ArXiv (abs)PDFHTML

Papers citing "Interpolating between Optimal Transport and MMD using Sinkhorn Divergences"

50 / 310 papers shown
Title
Order Constraints in Optimal Transport
Order Constraints in Optimal Transport
Fabian Lim
L. Wynter
Shiau Hong Lim
OT
86
4
0
14 Oct 2021
Adversarial examples by perturbing high-level features in intermediate
  decoder layers
Adversarial examples by perturbing high-level features in intermediate decoder layers
Vojtěch Čermák
Lukáš Adam
AAMLGAN
37
0
0
14 Oct 2021
Bundle Networks: Fiber Bundles, Local Trivializations, and a Generative
  Approach to Exploring Many-to-one Maps
Bundle Networks: Fiber Bundles, Local Trivializations, and a Generative Approach to Exploring Many-to-one Maps
Nico Courts
Henry Kvinge
38
4
0
13 Oct 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
71
44
0
13 Oct 2021
Using Optimal Transport as Alignment Objective for fine-tuning
  Multilingual Contextualized Embeddings
Using Optimal Transport as Alignment Objective for fine-tuning Multilingual Contextualized Embeddings
Sawsan Alqahtani
Garima Lalwani
Yi Zhang
Salvatore Romeo
Saab Mansour
OT
70
25
0
06 Oct 2021
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP
  Tasks
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj
Tushar Vaidya
Soujanya Poria
OTFedML
131
7
0
06 Oct 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
148
35
0
05 Oct 2021
Factored couplings in multi-marginal optimal transport via difference of
  convex programming
Factored couplings in multi-marginal optimal transport via difference of convex programming
Q. Tran
H. Janati
I. Redko
Rémi Flamary
Nicolas Courty
OT
110
1
0
01 Oct 2021
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
91
9
0
28 Sep 2021
Unsupervised Diffeomorphic Surface Registration and Non-Linear Modelling
Unsupervised Diffeomorphic Surface Registration and Non-Linear Modelling
Balder Croquet
Daan Christiaens
S. Weinberg
M. Bronstein
Dirk Vandermeulen
P. Claes
MedIm
81
8
0
28 Sep 2021
Entropic estimation of optimal transport maps
Entropic estimation of optimal transport maps
Aram-Alexandre Pooladian
Jonathan Niles-Weed
OT
122
108
0
24 Sep 2021
Optimal transport weights for causal inference
Optimal transport weights for causal inference
Eric A. Dunipace
CMLOT
68
9
0
05 Sep 2021
Barycentric-alignment and reconstruction loss minimization for domain
  generalization
Barycentric-alignment and reconstruction loss minimization for domain generalization
Boyang Lyu
Thuan Q. Nguyen
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
140
4
0
04 Sep 2021
Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and Optimal
  Transport
Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and Optimal Transport
Rémy Leroy
Pauline Trouvé-Peloux
F. Champagnat
Bertrand Le Saux
Marcela Carvalho
3DPC
76
3
0
30 Jul 2021
Limit Distribution Theory for the Smooth 1-Wasserstein Distance with
  Applications
Limit Distribution Theory for the Smooth 1-Wasserstein Distance with Applications
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
77
9
0
28 Jul 2021
Fast and Scalable Optimal Transport for Brain Tractograms
Fast and Scalable Optimal Transport for Brain Tractograms
Jean Feydy
Pierre Roussillon
A. Trouvé
Pietro Gori
OT
64
27
0
05 Jul 2021
Direct Measure Matching for Crowd Counting
Direct Measure Matching for Crowd Counting
Hui Lin
Xiaopeng Hong
Zhiheng Ma
Xing Wei
Yunfeng Qiu
Yaowei Wang
Yihong Gong
OT
75
45
0
04 Jul 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
106
13
0
22 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
131
40
0
16 Jun 2021
PriorGrad: Improving Conditional Denoising Diffusion Models with
  Data-Dependent Adaptive Prior
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Sang-gil Lee
Heeseung Kim
Chaehun Shin
Xu Tan
Chang-Shu Liu
Qi Meng
Tao Qin
Wei Chen
Sung-Hoon Yoon
Tie-Yan Liu
DiffM
83
89
0
11 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
97
93
0
11 Jun 2021
A Neural Tangent Kernel Perspective of GANs
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
129
27
0
10 Jun 2021
Solving Schrödinger Bridges via Maximum Likelihood
Solving Schrödinger Bridges via Maximum Likelihood
Francisco Vargas
Pierre Thodoroff
Neil D. Lawrence
A. Lamacraft
OT
113
147
0
03 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
105
57
0
01 Jun 2021
Optimal transport with $f$-divergence regularization and generalized
  Sinkhorn algorithm
Optimal transport with fff-divergence regularization and generalized Sinkhorn algorithm
Dávid Terjék
Diego González-Sánchez
OT
51
8
0
29 May 2021
A likelihood approach to nonparametric estimation of a singular
  distribution using deep generative models
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
97
17
0
09 May 2021
Finite sample approximations of exact and entropic Wasserstein distances
  between covariance operators and Gaussian processes
Finite sample approximations of exact and entropic Wasserstein distances between covariance operators and Gaussian processes
H. Q. Minh
46
2
0
26 Apr 2021
SPOT: A framework for selection of prototypes using optimal transport
SPOT: A framework for selection of prototypes using optimal transport
Karthik S. Gurumoorthy
Pratik Jawanpuria
Bamdev Mishra
OT
71
12
0
18 Mar 2021
Soft and subspace robust multivariate rank tests based on entropy
  regularized optimal transport
Soft and subspace robust multivariate rank tests based on entropy regularized optimal transport
Shoaib Bin Masud
Boyang Lyu
Shuchin Aeron
OT
31
1
0
16 Mar 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
88
151
0
05 Mar 2021
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
106
48
0
02 Mar 2021
Convergence of Gaussian-smoothed optimal transport distance with
  sub-gamma distributions and dependent samples
Convergence of Gaussian-smoothed optimal transport distance with sub-gamma distributions and dependent samples
Yixing Zhang
Xiuyuan Cheng
Galen Reeves
OT
61
10
0
28 Feb 2021
Mitigating Domain Mismatch in Face Recognition Using Style Matching
Mitigating Domain Mismatch in Face Recognition Using Style Matching
Chun-Hsien Lin
Bing-Fei Wu
CVBM
56
3
0
26 Feb 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
61
12
0
24 Feb 2021
ResNet-LDDMM: Advancing the LDDMM Framework using Deep Residual Networks
ResNet-LDDMM: Advancing the LDDMM Framework using Deep Residual Networks
Boulbaba Ben Amor
Sylvain Arguillere
Ling Shao
59
30
0
16 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
100
70
0
15 Feb 2021
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
HNPE: Leveraging Global Parameters for Neural Posterior Estimation
Pedro L. C. Rodrigues
Thomas Moreau
Gilles Louppe
Alexandre Gramfort
175
13
0
12 Feb 2021
Unsupervised Ground Metric Learning using Wasserstein Singular Vectors
Unsupervised Ground Metric Learning using Wasserstein Singular Vectors
Geert-Jan Huizing
Laura Cantini
Gabriel Peyré
SSLOT
39
6
0
11 Feb 2021
On Transportation of Mini-batches: A Hierarchical Approach
On Transportation of Mini-batches: A Hierarchical Approach
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
100
18
0
11 Feb 2021
On the Existence of Optimal Transport Gradient for Learning Generative
  Models
On the Existence of Optimal Transport Gradient for Learning Generative Models
Antoine Houdard
Arthur Leclaire
Nicolas Papadakis
Julien Rabin
OTGAN
64
6
0
10 Feb 2021
Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud
Meta-PU: An Arbitrary-Scale Upsampling Network for Point Cloud
Shuquan Ye
Dongdong Chen
Songfang Han
Bo Liu
Jing Liao
3DPC
73
82
0
08 Feb 2021
Estimating 2-Sinkhorn Divergence between Gaussian Processes from
  Finite-Dimensional Marginals
Estimating 2-Sinkhorn Divergence between Gaussian Processes from Finite-Dimensional Marginals
Anton Mallasto
OT
44
1
0
05 Feb 2021
Optimal Transport as a Defense Against Adversarial Attacks
Optimal Transport as a Defense Against Adversarial Attacks
Quentin Bouniot
Romaric Audigier
Angélique Loesch
AAMLOOD
32
9
0
05 Feb 2021
Regularized Policies are Reward Robust
Regularized Policies are Reward Robust
Hisham Husain
K. Ciosek
Ryota Tomioka
55
25
0
18 Jan 2021
Smooth $p$-Wasserstein Distance: Structure, Empirical Approximation, and
  Statistical Applications
Smooth ppp-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
Sloan Nietert
Ziv Goldfeld
Kengo Kato
105
33
0
11 Jan 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
116
60
0
05 Jan 2021
Convergence and finite sample approximations of entropic regularized
  Wasserstein distances in Gaussian and RKHS settings
Convergence and finite sample approximations of entropic regularized Wasserstein distances in Gaussian and RKHS settings
M. H. Quang
111
5
0
05 Jan 2021
Model Compression Using Optimal Transport
Model Compression Using Optimal Transport
Suhas Lohit
Michael J. Jones
81
8
0
07 Dec 2020
DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes
DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes
Albert Matveev
Ruslan Rakhimov
Alexey Artemov
G. Bobrovskikh
Vage Egiazarian
Emil Bogomolov
Daniele Panozzo
Denis Zorin
Evgeny Burnaev
3DPC
60
20
0
30 Nov 2020
Improving Federated Relational Data Modeling via Basis Alignment and
  Weight Penalty
Improving Federated Relational Data Modeling via Basis Alignment and Weight Penalty
Yilun Lin
Chaochao Chen
Cen Chen
Li Wang
FedML
83
8
0
23 Nov 2020
Previous
1234567
Next