ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08278
  4. Cited By
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences

Interpolating between Optimal Transport and MMD using Sinkhorn Divergences

18 October 2018
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
    OT
ArXiv (abs)PDFHTML

Papers citing "Interpolating between Optimal Transport and MMD using Sinkhorn Divergences"

50 / 310 papers shown
Title
Lower Complexity Adaptation for Empirical Entropic Optimal Transport
Lower Complexity Adaptation for Empirical Entropic Optimal Transport
Michel Groppe
Shayan Hundrieser
OT
62
11
0
23 Jun 2023
Learning Elastic Costs to Shape Monge Displacements
Learning Elastic Costs to Shape Monge Displacements
Michal Klein
Aram-Alexandre Pooladian
Pierre Ablin
Eugène Ndiaye
Jonathan Niles-Weed
Marco Cuturi
79
4
0
20 Jun 2023
Training generative models from privatized data
Training generative models from privatized data
Daria Reshetova
Wei-Ning Chen
Ayfer Özgür
FedML
60
3
0
15 Jun 2023
Importance Sparsification for Sinkhorn Algorithm
Importance Sparsification for Sinkhorn Algorithm
Mengyun Li
Jun Yu
Tao Li
Cheng Meng
OT
124
8
0
11 Jun 2023
Neural Injective Functions for Multisets, Measures and Graphs via a
  Finite Witness Theorem
Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem
Tal Amir
S. Gortler
Ilai Avni
Ravi Ravina
Nadav Dym
165
28
0
10 Jun 2023
Training neural operators to preserve invariant measures of chaotic
  attractors
Training neural operators to preserve invariant measures of chaotic attractors
Ruoxi Jiang
Peter Y. Lu
Elena Orlova
Rebecca Willett
AI4TS
113
26
0
01 Jun 2023
Bringing regularized optimal transport to lightspeed: a splitting method
  adapted for GPUs
Bringing regularized optimal transport to lightspeed: a splitting method adapted for GPUs
Jacob Lindbäck
Zesen Wang
Mikael Johansson
OT
98
1
0
29 May 2023
Diffeomorphic Mesh Deformation via Efficient Optimal Transport for
  Cortical Surface Reconstruction
Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction
Tung Le
Khai Nguyen
Shanlin Sun
Kun Han
Nhat Ho
Xiaohui Xie
66
5
0
27 May 2023
Exact Generalization Guarantees for (Regularized) Wasserstein
  Distributionally Robust Models
Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models
Waïss Azizian
F. Iutzeler
J. Malick
OOD
88
10
0
26 May 2023
Learning to Quantize Vulnerability Patterns and Match to Locate
  Statement-Level Vulnerabilities
Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities
Michael Fu
Trung Le
Van Nguyen
Chakkrit Tantithamthavorn
Dinh Q. Phung
61
3
0
26 May 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
92
1
0
25 May 2023
Feature-aligned N-BEATS with Sinkhorn divergence
Feature-aligned N-BEATS with Sinkhorn divergence
Joon-Young Lee
Myeongho Jeon
Myung-joo Kang
Kyung-soon Park
AI4TS
57
0
0
24 May 2023
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
Hugues van Assel
Titouan Vayer
Rémi Flamary
Nicolas Courty
87
9
0
23 May 2023
Parameter-Efficient Learning for Text-to-Speech Accent Adaptation
Parameter-Efficient Learning for Text-to-Speech Accent Adaptation
Lijie Yang
Chao-Han Huck Yang
Jen-Tzung Chien
91
11
0
18 May 2023
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth
  Costs
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
48
11
0
16 May 2023
Reconstructing Animatable Categories from Videos
Reconstructing Animatable Categories from Videos
Gengshan Yang
Chaoyang Wang
Dinesh Reddy Narapureddy
Deva Ramanan
104
37
0
10 May 2023
Scalable Optimal Transport Methods in Machine Learning: A Contemporary
  Survey
Scalable Optimal Transport Methods in Machine Learning: A Contemporary Survey
Abdelwahed Khamis
Russell Tsuchida
Mohamed Tarek
V. Rolland
Lars Petersson
OT
139
14
0
08 May 2023
LAVA: Data Valuation without Pre-Specified Learning Algorithms
LAVA: Data Valuation without Pre-Specified Learning Algorithms
H. Just
Feiyang Kang
Jiachen T. Wang
Yi Zeng
Myeongseob Ko
Ming Jin
R. Jia
111
62
0
28 Apr 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
83
23
0
26 Apr 2023
ProPanDL: A Modular Architecture for Uncertainty-Aware Panoptic
  Segmentation
ProPanDL: A Modular Architecture for Uncertainty-Aware Panoptic Segmentation
Jacob Deery
Chang Won Lee
Steven Waslander
56
2
0
17 Apr 2023
Beyond NeRF Underwater: Learning Neural Reflectance Fields for True
  Color Correction of Marine Imagery
Beyond NeRF Underwater: Learning Neural Reflectance Fields for True Color Correction of Marine Imagery
Tianyi Zhang
Matthew Johnson-Roberson
93
26
0
06 Apr 2023
Dynamic Point Fields
Dynamic Point Fields
Sergey Prokudin
Qianli Ma
Maxime Raafat
Julien P. C. Valentin
Siyu Tang
3DHAI4CE
113
28
0
05 Apr 2023
kNN-Res: Residual Neural Network with kNN-Graph coherence for point
  cloud registration
kNN-Res: Residual Neural Network with kNN-Graph coherence for point cloud registration
Muhammad S. Battikh
D. Hammill
Mat Cook
Artem Lenskiy
3DPC
18
1
0
31 Mar 2023
On the Effect of Initialization: The Scaling Path of 2-Layer Neural
  Networks
On the Effect of Initialization: The Scaling Path of 2-Layer Neural Networks
Sebastian Neumayer
Lénaïc Chizat
M. Unser
65
2
0
31 Mar 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
56
2
0
26 Mar 2023
Wasserstein Loss for Semantic Editing in the Latent Space of GANs
Wasserstein Loss for Semantic Editing in the Latent Space of GANs
Perla Doubinsky
Nicolas Audebert
M. Crucianu
Hervé Le Borgne
GAN
38
1
0
22 Mar 2023
Doubly Regularized Entropic Wasserstein Barycenters
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
77
14
0
21 Mar 2023
Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem
Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem
Xavier Aramayo Carrasco
Maksim Nekrashevich
Petr Mokrov
Evgeny Burnaev
Alexander Korotin
OT
106
7
0
10 Mar 2023
How optimal transport can tackle gender biases in multi-class
  neural-network classifiers for job recommendations?
How optimal transport can tackle gender biases in multi-class neural-network classifiers for job recommendations?
Fanny Jourdan
Titon Tshiongo Kaninku
Nicholas M. Asher
Jean-Michel Loubes
Laurent Risser
FaML
74
4
0
27 Feb 2023
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient
  Unsupervised Learning: Theory and Design Principles
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient Unsupervised Learning: Theory and Design Principles
Biswadeep Chakraborty
Saibal Mukhopadhyay
88
10
0
22 Feb 2023
Transformed Distribution Matching for Missing Value Imputation
Transformed Distribution Matching for Missing Value Imputation
He Zhao
Ke Sun
Amir Dezfouli
Edwin V. Bonilla
94
21
0
20 Feb 2023
An overview of differentiable particle filters for data-adaptive
  sequential Bayesian inference
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
82
16
0
19 Feb 2023
Distances for Markov Chains, and Their Differentiation
Distances for Markov Chains, and Their Differentiation
Tristan Brugere
Qingsong Wang
Yusu Wang
OTOOD
60
4
0
16 Feb 2023
On Rank Energy Statistics via Optimal Transport: Continuity,
  Convergence, and Change Point Detection
On Rank Energy Statistics via Optimal Transport: Continuity, Convergence, and Change Point Detection
Matthew Werenski
Shoaib Bin Masud
James M. Murphy
Shuchin Aeron
72
4
0
15 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
96
30
0
09 Feb 2023
Monge, Bregman and Occam: Interpretable Optimal Transport in
  High-Dimensions with Feature-Sparse Maps
Monge, Bregman and Occam: Interpretable Optimal Transport in High-Dimensions with Feature-Sparse Maps
Marco Cuturi
Michal Klein
Pierre Ablin
OT
86
15
0
08 Feb 2023
Domain Adaptation for Time Series Under Feature and Label Shifts
Domain Adaptation for Time Series Under Feature and Label Shifts
Huan He
Owen Queen
Teddy Koker
Consuelo Cuevas
Theodoros Tsiligkaridis
Marinka Zitnik
AI4TS
112
71
0
06 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
108
15
0
31 Jan 2023
Fast Computation of Optimal Transport via Entropy-Regularized
  Extragradient Methods
Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods
Gen Li
Yanxi Chen
Yu Huang
Yuejie Chi
H. Vincent Poor
Yuxin Chen
OT
80
5
0
30 Jan 2023
Pre-training for Speech Translation: CTC Meets Optimal Transport
Pre-training for Speech Translation: CTC Meets Optimal Transport
Hang Le
Hongyu Gong
Changhan Wang
J. Pino
Benjamin Lecouteux
D. Schwab
OT
102
26
0
27 Jan 2023
Maximum Mean Discrepancy Kernels for Predictive and Prognostic Modeling
  of Whole Slide Images
Maximum Mean Discrepancy Kernels for Predictive and Prognostic Modeling of Whole Slide Images
Piotr Keller
Muhammad Dawood
F. Minhas
49
3
0
23 Jan 2023
Simplex Autoencoders
Simplex Autoencoders
Aymene Mohammed Bouayed
D. Naccache
SyDa
55
0
0
16 Jan 2023
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Khai Nguyen
Zhaolin Ren
Nhat Ho
78
8
0
10 Jan 2023
Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
  of Stochastic Experts
Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture of Stochastic Experts
Zhitong Gao
Yucong Chen
Chuyu Zhang
Xuming He
UQCV
57
5
0
14 Dec 2022
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDLUQCV
44
4
0
24 Nov 2022
Representational dissimilarity metric spaces for stochastic neural
  networks
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
79
22
0
21 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
104
49
0
16 Nov 2022
Cluster-Based Autoencoders for Volumetric Point Clouds
Cluster-Based Autoencoders for Volumetric Point Clouds
Stephan Antholzer
Martin Berger
Tobias Hell
3DPC
14
0
0
02 Nov 2022
BSDF Importance Baking: A Lightweight Neural Solution to Importance
  Sampling General Parametric BSDFs
BSDF Importance Baking: A Lightweight Neural Solution to Importance Sampling General Parametric BSDFs
Yaoyi Bai
Songyin Wu
Z. Zeng
Beibei Wang
Ling-Qi Yan
60
2
0
25 Oct 2022
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
David Alvarez-Melis
Nicolò Fusi
Lester W. Mackey
Tal Wagner
OT
98
1
0
24 Oct 2022
Previous
1234567
Next