Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.05369
Cited By
v1
v2
v3
v4 (latest)
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
12 October 2018
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel"
50 / 192 papers shown
Title
Weighted Neural Tangent Kernel: A Generalized and Improved Network-Induced Kernel
Lei Tan
Shutong Wu
Xiaolin Huang
30
2
0
22 Mar 2021
Inductive Bias of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm
Meena Jagadeesan
Ilya P. Razenshteyn
Suriya Gunasekar
113
21
0
24 Feb 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
92
74
0
23 Feb 2021
Approximation and Learning with Deep Convolutional Models: a Kernel Perspective
A. Bietti
89
30
0
19 Feb 2021
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Fartash Faghri
Sven Gowal
C. N. Vasconcelos
David J. Fleet
Fabian Pedregosa
Nicolas Le Roux
AAML
234
7
0
17 Feb 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
145
46
0
04 Feb 2021
Implicit Bias of Linear RNNs
M Motavali Emami
Mojtaba Sahraee-Ardakan
Parthe Pandit
S. Rangan
A. Fletcher
44
11
0
19 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
122
21
0
07 Jan 2021
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
168
21
0
04 Jan 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
97
29
0
31 Dec 2020
Mathematical Models of Overparameterized Neural Networks
Cong Fang
Hanze Dong
Tong Zhang
181
23
0
27 Dec 2020
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
132
51
0
20 Dec 2020
Why Do Better Loss Functions Lead to Less Transferable Features?
Simon Kornblith
Ting-Li Chen
Honglak Lee
Mohammad Norouzi
FaML
128
92
0
30 Oct 2020
Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth
Thao Nguyen
M. Raghu
Simon Kornblith
OOD
107
284
0
29 Oct 2020
On Convergence and Generalization of Dropout Training
Poorya Mianjy
R. Arora
132
30
0
23 Oct 2020
Train simultaneously, generalize better: Stability of gradient-based minimax learners
Farzan Farnia
Asuman Ozdaglar
73
48
0
23 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
91
16
0
22 Oct 2020
Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity
Shuxiao Chen
Hangfeng He
Weijie J. Su
53
24
0
22 Oct 2020
Beyond Lazy Training for Over-parameterized Tensor Decomposition
Xiang Wang
Chenwei Wu
Jason D. Lee
Tengyu Ma
Rong Ge
91
14
0
22 Oct 2020
Dual Averaging is Surprisingly Effective for Deep Learning Optimization
Samy Jelassi
Aaron Defazio
61
5
0
20 Oct 2020
Why Are Convolutional Nets More Sample-Efficient than Fully-Connected Nets?
Zhiyuan Li
Yi Zhang
Sanjeev Arora
BDL
MLT
85
39
0
16 Oct 2020
A Modular Analysis of Provable Acceleration via Polyak's Momentum: Training a Wide ReLU Network and a Deep Linear Network
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
80
24
0
04 Oct 2020
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
63
2
0
15 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
162
61
0
03 Aug 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
87
214
0
31 Jul 2020
Understanding Implicit Regularization in Over-Parameterized Single Index Model
Jianqing Fan
Zhuoran Yang
Mengxin Yu
81
18
0
16 Jul 2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
MLT
95
27
0
09 Jul 2020
Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network
Tianyang Hu
Wei Cao
Cong Lin
Guang Cheng
118
52
0
06 Jul 2020
Modeling from Features: a Mean-field Framework for Over-parameterized Deep Neural Networks
Cong Fang
Jason D. Lee
Pengkun Yang
Tong Zhang
OOD
FedML
156
58
0
03 Jul 2020
Towards Understanding Hierarchical Learning: Benefits of Neural Representations
Minshuo Chen
Yu Bai
Jason D. Lee
T. Zhao
Huan Wang
Caiming Xiong
R. Socher
SSL
95
49
0
24 Jun 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
135
65
0
21 Jun 2020
Gradient descent follows the regularization path for general losses
Ziwei Ji
Miroslav Dudík
Robert Schapire
Matus Telgarsky
AI4CE
FaML
167
62
0
19 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
Jason D. Lee
Tengyu Ma
219
95
0
15 Jun 2020
On the training dynamics of deep networks with
L
2
L_2
L
2
regularization
Aitor Lewkowycz
Guy Gur-Ari
113
54
0
15 Jun 2020
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
73
171
0
11 Jun 2020
Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi
Robert D. Nowak
35
7
0
10 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
360
11
0
08 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
69
25
0
31 May 2020
Provable Training of a ReLU Gate with an Iterative Non-Gradient Algorithm
Sayar Karmakar
Anirbit Mukherjee
52
7
0
08 May 2020
Optimization in Machine Learning: A Distribution Space Approach
Yongqiang Cai
Qianxiao Li
Zuowei Shen
32
1
0
18 Apr 2020
A function space analysis of finite neural networks with insights from sampling theory
Raja Giryes
72
6
0
15 Apr 2020
Adversarial Robustness Guarantees for Random Deep Neural Networks
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
55
8
0
13 Apr 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
167
79
0
11 Mar 2020
Optimal Regularization Can Mitigate Double Descent
Preetum Nakkiran
Prayaag Venkat
Sham Kakade
Tengyu Ma
85
133
0
04 Mar 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
138
56
0
25 Feb 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
46
4
0
22 Feb 2020
Revealing the Structure of Deep Neural Networks via Convex Duality
Tolga Ergen
Mert Pilanci
MLT
105
72
0
22 Feb 2020
Few-Shot Learning via Learning the Representation, Provably
S. Du
Wei Hu
Sham Kakade
Jason D. Lee
Qi Lei
SSL
100
262
0
21 Feb 2020
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
74
21
0
19 Feb 2020
Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function
Lingkai Kong
Molei Tao
57
23
0
14 Feb 2020
Previous
1
2
3
4
Next