Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.05369
Cited By
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
12 October 2018
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel"
50 / 75 papers shown
Title
Embedding principle of homogeneous neural network for classification problem
Jiahan Zhang
Tao Luo
Yaoyu Zhang
0
0
0
18 May 2025
LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection
Xinyue Zeng
Haohui Wang
Junhong Lin
Jun Wu
Tyler Cody
Dawei Zhou
100
0
0
01 May 2025
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
44
1
0
21 Oct 2024
Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods
Hossein Taheri
Christos Thrampoulidis
Arya Mazumdar
MLT
36
0
0
13 Oct 2024
COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
Jipeng Han
39
0
0
02 Oct 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
35
6
0
14 Aug 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
82
2
0
29 Apr 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
Yunlong Yu
CLL
39
3
0
19 Mar 2024
Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data
Zhiwei Xu
Yutong Wang
Spencer Frei
Gal Vardi
Wei Hu
MLT
28
24
0
04 Oct 2023
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
35
11
0
03 Oct 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
37
18
0
07 Sep 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
48
8
0
07 Sep 2023
Sharpness Minimization Algorithms Do Not Only Minimize Sharpness To Achieve Better Generalization
Kaiyue Wen
Zhiyuan Li
Tengyu Ma
FAtt
38
26
0
20 Jul 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
Practically Solving LPN in High Noise Regimes Faster Using Neural Networks
Haozhe Jiang
Kaiyue Wen
Yi-Long Chen
35
0
0
14 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics
Yulong Lu
D. Slepčev
Lihan Wang
40
22
0
01 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
25
5
0
28 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
39
123
0
18 Jul 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
32
3
0
02 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
22
114
0
30 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
18
6
0
10 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
30
11
0
03 Jun 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
40
121
0
03 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
Shiyun Xu
Zhiqi Bu
Pratik Chaudhari
Ian Barnett
24
21
0
25 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
68
64
0
25 Jan 2022
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Rishabh Agarwal
Tengyu Ma
Aaron Courville
George Tucker
Sergey Levine
OffRL
31
65
0
09 Dec 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
22
18
0
11 Nov 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya-Qin Zhang
22
16
0
23 Oct 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
36
6
0
15 Oct 2021
Self-supervised Learning is More Robust to Dataset Imbalance
Hong Liu
Jeff Z. HaoChen
Adrien Gaidon
Tengyu Ma
OOD
SSL
33
157
0
11 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
99
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
41
11
0
06 Oct 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
41
19
0
11 May 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
33
9
0
15 Apr 2021
Understanding the role of importance weighting for deep learning
Da Xu
Yuting Ye
Chuanwei Ruan
FAtt
36
43
0
28 Mar 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
74
44
0
04 Feb 2021
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Why Are Convolutional Nets More Sample-Efficient than Fully-Connected Nets?
Zhiyuan Li
Yi Zhang
Sanjeev Arora
BDL
MLT
6
39
0
16 Oct 2020
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
30
2
0
15 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
26
61
0
03 Aug 2020
Generalisation Guarantees for Continual Learning with Orthogonal Gradient Descent
Mehdi Abbana Bennani
Thang Doan
Masashi Sugiyama
CLL
50
61
0
21 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
On the training dynamics of deep networks with
L
2
L_2
L
2
regularization
Aitor Lewkowycz
Guy Gur-Ari
36
53
0
15 Jun 2020
1
2
Next