Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.05369
Cited By
v1
v2
v3
v4 (latest)
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
12 October 2018
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel"
50 / 192 papers shown
Title
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
69
6
0
20 Oct 2022
The Asymmetric Maximum Margin Bias of Quasi-Homogeneous Neural Networks
D. Kunin
Atsushi Yamamura
Chao Ma
Surya Ganguli
79
21
0
07 Oct 2022
Fast Neural Kernel Embeddings for General Activations
Insu Han
A. Zandieh
Jaehoon Lee
Roman Novak
Lechao Xiao
Amin Karbasi
120
19
0
09 Sep 2022
On the non-universality of deep learning: quantifying the cost of symmetry
Emmanuel Abbe
Enric Boix-Adserà
FedML
MLT
80
19
0
05 Aug 2022
Feature selection with gradient descent on two-layer networks in low-rotation regimes
Matus Telgarsky
MLT
81
16
0
04 Aug 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
114
133
0
18 Jul 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
88
3
0
02 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
102
123
0
30 Jun 2022
How You Start Matters for Generalization
Sameera Ramasinghe
L. MacDonald
M. Farazi
Hemanth Saratchandran
Simon Lucey
ODL
AI4CE
89
6
0
17 Jun 2022
Max-Margin Works while Large Margin Fails: Generalization without Uniform Convergence
Margalit Glasgow
Colin Wei
Mary Wootters
Tengyu Ma
96
5
0
16 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
113
6
0
10 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
85
10
0
08 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
85
11
0
03 Jun 2022
Long-Tailed Learning Requires Feature Learning
T. Laurent
J. V. Brecht
Xavier Bresson
VLM
93
1
0
29 May 2022
Generalization Bounds for Gradient Methods via Discrete and Continuous Prior
Jun Yu Li
Xu Luo
Jian Li
80
4
0
27 May 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
109
3
0
22 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
99
129
0
03 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
96
13
0
22 Apr 2022
High-dimensional Asymptotics of Langevin Dynamics in Spiked Matrix Models
Tengyuan Liang
Subhabrata Sen
Pragya Sur
83
7
0
09 Apr 2022
Surrogate Gap Minimization Improves Sharpness-Aware Training
Juntang Zhuang
Boqing Gong
Liangzhe Yuan
Huayu Chen
Hartwig Adam
Nicha Dvornek
S. Tatikonda
James Duncan
Ting Liu
107
158
0
15 Mar 2022
Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
Shiyun Xu
Zhiqi Bu
Pratik Chaudhari
Ian Barnett
86
23
0
25 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
103
30
0
15 Feb 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
172
66
0
25 Jan 2022
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
Yufeng Zhang
Siyu Chen
Zhuoran Yang
Michael I. Jordan
Zhaoran Wang
128
4
0
27 Dec 2021
Integral representations of shallow neural network with Rectified Power Unit activation function
Ahmed Abdeljawad
Philipp Grohs
42
10
0
20 Dec 2021
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Rishabh Agarwal
Tengyu Ma
Aaron Courville
George Tucker
Sergey Levine
OffRL
97
69
0
09 Dec 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
80
18
0
11 Nov 2021
Dynamics of Local Elasticity During Training of Neural Nets
Soham Dan
Anirbit Mukherjee
Avirup Das
Phanideep Gampa
73
0
0
01 Nov 2021
Limiting fluctuation and trajectorial stability of multilayer neural networks with mean field training
H. Pham
Phan-Minh Nguyen
73
6
0
29 Oct 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya Zhang
84
16
0
23 Oct 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
115
6
0
15 Oct 2021
Self-supervised Learning is More Robust to Dataset Imbalance
Hong Liu
Jeff Z. HaoChen
Adrien Gaidon
Tengyu Ma
OOD
SSL
86
167
0
11 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
143
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
102
11
0
06 Oct 2021
Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers
Colin Wei
Yining Chen
Tengyu Ma
79
92
0
28 Jul 2021
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
103
8
0
14 Jul 2021
Optimal Gradient-based Algorithms for Non-concave Bandit Optimization
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
417
17
0
09 Jul 2021
Understanding Deflation Process in Over-parametrized Tensor Decomposition
Rong Ge
Y. Ren
Xiang Wang
Mo Zhou
80
19
0
11 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
76
27
0
11 Jun 2021
Separation Results between Fixed-Kernel and Feature-Learning Probability Metrics
Carles Domingo-Enrich
Youssef Mroueh
66
1
0
10 Jun 2021
Overparameterization of deep ResNet: zero loss and mean-field analysis
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
ODL
95
25
0
30 May 2021
Properties of the After Kernel
Philip M. Long
66
29
0
21 May 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
91
19
0
11 May 2021
Achieving Small Test Error in Mildly Overparameterized Neural Networks
Shiyu Liang
Ruoyu Sun
R. Srikant
61
3
0
24 Apr 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
57
9
0
15 Apr 2021
An Adaptive Synaptic Array using Fowler-Nordheim Dynamic Analog Memory
Darshit Mehta
K. Aono
S. Chakrabartty
40
12
0
13 Apr 2021
A Recipe for Global Convergence Guarantee in Deep Neural Networks
Kenji Kawaguchi
Qingyun Sun
58
12
0
12 Apr 2021
Understanding the role of importance weighting for deep learning
Da Xu
Yuting Ye
Chuanwei Ruan
FAtt
95
44
0
28 Mar 2021
Recent Advances in Large Margin Learning
Yiwen Guo
Changshui Zhang
AAML
AI4CE
121
13
0
25 Mar 2021
Why Do Local Methods Solve Nonconvex Problems?
Tengyu Ma
54
13
0
24 Mar 2021
Previous
1
2
3
4
Next