Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.11973
Cited By
MolGAN: An implicit generative model for small molecular graphs
30 May 2018
Nicola De Cao
Thomas Kipf
GNN
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MolGAN: An implicit generative model for small molecular graphs"
46 / 146 papers shown
Title
Drug Discovery Approaches using Quantum Machine Learning
Junde Li
M. Alam
Congzhou M. Sha
Jian Wang
Nikolay V. Dokholyan
Swaroop Ghosh
VLM
16
14
0
01 Apr 2021
MARS: Markov Molecular Sampling for Multi-objective Drug Discovery
Yutong Xie
Chence Shi
Hao Zhou
Yuwei Yang
Weinan Zhang
Yong Yu
Lei Li
30
138
0
18 Mar 2021
Accurate Learning of Graph Representations with Graph Multiset Pooling
Jinheon Baek
Minki Kang
Sung Ju Hwang
36
172
0
23 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
187
0
01 Feb 2021
Barking up the right tree: an approach to search over molecule synthesis DAGs
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
51
56
0
21 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
A Deep Generative Model for Molecule Optimization via One Fragment Modification
Ziqi Chen
Martin Renqiang Min
S. Parthasarathy
Xia Ning
21
61
0
08 Dec 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
29
64
0
25 Nov 2020
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
27
225
0
30 Sep 2020
Scaffold-constrained molecular generation
Maxime Langevin
H. Minoux
M. Levesque
M. Bianciotto
26
45
0
15 Sep 2020
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
44
147
0
13 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei-Yue Wang
BDL
28
280
0
17 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
29
171
0
30 Mar 2020
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
38
120
0
26 Mar 2020
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
21
8
0
04 Mar 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
21
82
0
18 Feb 2020
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
28
31
0
14 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
64
425
0
26 Jan 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
18
90
0
22 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
A. Micheli
Marco Podda
AI4CE
GNN
42
277
0
29 Dec 2019
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
28
63
0
13 Nov 2019
G2SAT: Learning to Generate SAT Formulas
Jiaxuan You
Haoze Wu
Clark W. Barrett
R. Ramanujan
J. Leskovec
NAI
19
35
0
29 Oct 2019
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
20
13
0
25 Oct 2019
NEAR: Neighborhood Edge AggregatoR for Graph Classification
Cheolhyeong Kim
Haeseong Moon
H. Hwang
GNN
17
5
0
06 Sep 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
30
92
0
20 Aug 2019
Graph Neural Based End-to-end Data Association Framework for Online Multiple-Object Tracking
Xiaolong Jiang
Peizhao Li
Yanjing Li
Xiantong Zhen
VOT
26
32
0
11 Jul 2019
Deep Set Prediction Networks
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
17
107
0
15 Jun 2019
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
27
2
0
30 May 2019
Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Andreea Deac
Yu-Hsiang Huang
Petar Velickovic
Pietro Lió
Jian Tang
20
77
0
02 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
29
196
0
24 Apr 2019
Adversarial Out-domain Examples for Generative Models
Dario Pasquini
Marco Mingione
M. Bernaschi
WIGM
SILM
AAML
20
6
0
07 Mar 2019
Learning to Sample Hard Instances for Graph Algorithms
Ryoma Sato
M. Yamada
H. Kashima
19
1
0
26 Feb 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
159
8,356
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,400
0
20 Dec 2018
Deep Learning on Graphs: A Survey
Ziwei Zhang
Peng Cui
Wenwu Zhu
GNN
39
1,321
0
11 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
194
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
97
3,080
0
04 Jun 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
161
183
0
30 Apr 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
Previous
1
2
3