ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04231
19
61

A Deep Generative Model for Molecule Optimization via One Fragment Modification

8 December 2020
Ziqi Chen
Martin Renqiang Min
S. Parthasarathy
Xia Ning
ArXivPDFHTML
Abstract

Molecule optimization is a critical step in drug development to improve desired properties of drug candidates through chemical modification. We developed a novel deep generative model Modof over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets: without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in octanol-water partition coefficient penalized by synthetic accessibility and ring size; and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modifying one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement as at least 17.8% better than Modof-pipe.

View on arXiv
Comments on this paper