Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 483 papers shown
Title
Soft Mode in the Dynamics of Over-realizable On-line Learning for Soft Committee Machines
Frederieke Richert
Roman Worschech
B. Rosenow
11
5
0
29 Apr 2021
A Class of Dimension-free Metrics for the Convergence of Empirical Measures
Jiequn Han
Ruimeng Hu
Jihao Long
23
3
0
24 Apr 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
33
9
0
15 Apr 2021
A Recipe for Global Convergence Guarantee in Deep Neural Networks
Kenji Kawaguchi
Qingyun Sun
16
11
0
12 Apr 2021
Noether: The More Things Change, the More Stay the Same
Grzegorz Gluch
R. Urbanke
16
17
0
12 Apr 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
32
13
0
01 Apr 2021
Why Do Local Methods Solve Nonconvex Problems?
Tengyu Ma
18
13
0
24 Mar 2021
Weighted Neural Tangent Kernel: A Generalized and Improved Network-Induced Kernel
Lei Tan
Shutong Wu
Xiaolin Huang
21
1
0
22 Mar 2021
Full Gradient DQN Reinforcement Learning: A Provably Convergent Scheme
Konstantin Avrachenkov
Vivek Borkar
H. Dolhare
K. Patil
27
9
0
10 Mar 2021
Unintended Effects on Adaptive Learning Rate for Training Neural Network with Output Scale Change
Ryuichi Kanoh
M. Sugiyama
8
0
0
05 Mar 2021
Sparsity in long-time control of neural ODEs
C. Yagüe
Borjan Geshkovski
8
8
0
26 Feb 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Convergence rates for gradient descent in the training of overparameterized artificial neural networks with biases
Arnulf Jentzen
T. Kröger
ODL
28
7
0
23 Feb 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
22
72
0
23 Feb 2021
A proof of convergence for gradient descent in the training of artificial neural networks for constant target functions
Patrick Cheridito
Arnulf Jentzen
Adrian Riekert
Florian Rossmannek
28
24
0
19 Feb 2021
WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points
Albert No
Taeho Yoon
Sehyun Kwon
Ernest K. Ryu
GAN
19
2
0
15 Feb 2021
A Local Convergence Theory for Mildly Over-Parameterized Two-Layer Neural Network
Mo Zhou
Rong Ge
Chi Jin
74
44
0
04 Feb 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
41
49
0
24 Jan 2021
Learning with Gradient Descent and Weakly Convex Losses
Dominic Richards
Michael G. Rabbat
MLT
27
13
0
13 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
55
20
0
07 Jan 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
36
37
0
05 Jan 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
8
29
0
31 Dec 2020
Perspective: A Phase Diagram for Deep Learning unifying Jamming, Feature Learning and Lazy Training
Mario Geiger
Leonardo Petrini
M. Wyart
DRL
25
11
0
30 Dec 2020
Mathematical Models of Overparameterized Neural Networks
Cong Fang
Hanze Dong
Tong Zhang
27
22
0
27 Dec 2020
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
24
50
0
20 Dec 2020
On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers
E. Weinan
Stephan Wojtowytsch
28
42
0
10 Dec 2020
Feature Learning in Infinite-Width Neural Networks
Greg Yang
J. E. Hu
MLT
9
147
0
30 Nov 2020
Generalization and Memorization: The Bias Potential Model
Hongkang Yang
E. Weinan
25
11
0
29 Nov 2020
Implicit bias of deep linear networks in the large learning rate phase
Wei Huang
Weitao Du
R. Xu
Chunrui Liu
24
2
0
25 Nov 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
19
114
0
23 Nov 2020
Normalization effects on shallow neural networks and related asymptotic expansions
Jiahui Yu
K. Spiliopoulos
13
6
0
20 Nov 2020
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
25
19
0
09 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
Dataset Dynamics via Gradient Flows in Probability Space
David Alvarez-Melis
Nicolò Fusi
26
18
0
24 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
Beyond Lazy Training for Over-parameterized Tensor Decomposition
Xiang Wang
Chenwei Wu
J. Lee
Tengyu Ma
Rong Ge
11
14
0
22 Oct 2020
Deep Neural Networks Are Congestion Games: From Loss Landscape to Wardrop Equilibrium and Beyond
Nina Vesseron
I. Redko
Charlotte Laclau
31
5
0
21 Oct 2020
A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval
Fan Wu
Patrick Rebeschini
37
14
0
20 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Unbalanced Sobolev Descent
Youssef Mroueh
Mattia Rigotti
11
17
0
29 Sep 2020
Escaping Saddle-Points Faster under Interpolation-like Conditions
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
P. Mohapatra
12
1
0
28 Sep 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
19
305
0
24 Sep 2020
Machine Learning and Computational Mathematics
Weinan E
PINN
AI4CE
29
61
0
23 Sep 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
27
67
0
09 Sep 2020
A Dynamical Central Limit Theorem for Shallow Neural Networks
Zhengdao Chen
Grant M. Rotskoff
Joan Bruna
Eric Vanden-Eijnden
18
29
0
21 Aug 2020
Active Importance Sampling for Variational Objectives Dominated by Rare Events: Consequences for Optimization and Generalization
Grant M. Rotskoff
Andrew R. Mitchell
Eric Vanden-Eijnden
11
13
0
11 Aug 2020
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
14
34
0
06 Aug 2020
Sketching Datasets for Large-Scale Learning (long version)
Rémi Gribonval
Antoine Chatalic
Nicolas Keriven
V. Schellekens
Laurent Jacques
P. Schniter
17
5
0
04 Aug 2020
Previous
1
2
3
...
10
6
7
8
9
Next