Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 483 papers shown
Title
Convergence of Time-Averaged Mean Field Gradient Descent Dynamics for Continuous Multi-Player Zero-Sum Games
Yulong Lu
Pierre Monmarché
MLT
34
0
0
12 May 2025
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
42
0
0
06 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
109
0
0
06 May 2025
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
31
0
0
05 May 2025
Don't be lazy: CompleteP enables compute-efficient deep transformers
Nolan Dey
Bin Claire Zhang
Lorenzo Noci
Mufan Bill Li
Blake Bordelon
Shane Bergsma
C. Pehlevan
Boris Hanin
Joel Hestness
39
0
0
02 May 2025
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
An overview of condensation phenomenon in deep learning
Zhi-Qin John Xu
Yaoyu Zhang
Zhangchen Zhou
AI4CE
29
0
0
13 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
76
0
0
11 Apr 2025
Fractal and Regular Geometry of Deep Neural Networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
S. Vigogna
MDE
AI4CE
36
0
0
08 Apr 2025
Survey on Algorithms for multi-index models
Joan Bruna
Daniel Hsu
31
0
0
07 Apr 2025
Towards Understanding the Optimization Mechanisms in Deep Learning
Binchuan Qi
Wei Gong
Li Li
47
0
0
29 Mar 2025
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
Dheeraj M. Nagaraj
Anant Raj
44
0
0
17 Mar 2025
The Spectral Bias of Shallow Neural Network Learning is Shaped by the Choice of Non-linearity
Justin Sahs
Ryan Pyle
Fabio Anselmi
Ankit B. Patel
60
0
0
13 Mar 2025
Global Convergence and Rich Feature Learning in
L
L
L
-Layer Infinite-Width Neural Networks under
μ
μ
μ
P Parametrization
Zixiang Chen
Greg Yang
Qingyue Zhao
Q. Gu
MLT
50
0
0
12 Mar 2025
A Theory of Initialisation's Impact on Specialisation
Devon Jarvis
Sebastian Lee
Clémentine Dominé
Andrew M. Saxe
Stefano Sarao Mannelli
CLL
72
2
0
04 Mar 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Léo Dana
Francis R. Bach
Loucas Pillaud-Vivien
MLT
52
1
0
24 Feb 2025
A Gap Between the Gaussian RKHS and Neural Networks: An Infinite-Center Asymptotic Analysis
Akash Kumar
Rahul Parhi
Mikhail Belkin
46
0
0
22 Feb 2025
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Christophe Vauthier
Quentin Mérigot
Anna Korba
45
0
0
10 Feb 2025
Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble
Atsushi Nitanda
Anzelle Lee
Damian Tan Xing Kai
Mizuki Sakaguchi
Taiji Suzuki
AI4CE
61
1
0
09 Feb 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
56
0
0
07 Feb 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
36
1
0
10 Jan 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
61
1
0
10 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
Linear convergence of proximal descent schemes on the Wasserstein space
Razvan-Andrei Lascu
Mateusz B. Majka
David Siska
Łukasz Szpruch
74
1
0
22 Nov 2024
Proportional infinite-width infinite-depth limit for deep linear neural networks
Federico Bassetti
Lucia Ladelli
P. Rotondo
75
1
0
22 Nov 2024
Emergence of meta-stable clustering in mean-field transformer models
Giuseppe Bruno
Federico Pasqualotto
Andrea Agazzi
45
6
0
30 Oct 2024
A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities
Yatin Dandi
Luca Pesce
Hugo Cui
Florent Krzakala
Yue M. Lu
Bruno Loureiro
MLT
37
1
0
24 Oct 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
44
1
0
21 Oct 2024
A Lipschitz spaces view of infinitely wide shallow neural networks
Francesca Bartolucci
Marcello Carioni
José A. Iglesias
Yury Korolev
Emanuele Naldi
S. Vigogna
23
0
0
18 Oct 2024
Loss Landscape Characterization of Neural Networks without Over-Parametrization
Rustem Islamov
Niccolò Ajroldi
Antonio Orvieto
Aurelien Lucchi
35
4
0
16 Oct 2024
Shallow diffusion networks provably learn hidden low-dimensional structure
Nicholas M. Boffi
Arthur Jacot
Stephen Tu
Ingvar M. Ziemann
DiffM
36
1
0
15 Oct 2024
Kinetic interacting particle system: parameter estimation from complete and partial discrete observations
Chiara Amorino
Vytaut.e Pilipauskait.e
21
1
0
14 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model
Duy M. H. Nguyen
N. T. Diep
Trung Q. Nguyen
Hoang-Bao Le
Tai Nguyen
...
Pengtao Xie
Roger Wattenhofer
James Zhou
Daniel Sonntag
Mathias Niepert
VLM
55
3
0
03 Oct 2024
Simplicity bias and optimization threshold in two-layer ReLU networks
Etienne Boursier
Nicolas Flammarion
31
2
0
03 Oct 2024
Nonuniform random feature models using derivative information
Konstantin Pieper
Zezhong Zhang
Guannan Zhang
14
2
0
03 Oct 2024
Optimal Protocols for Continual Learning via Statistical Physics and Control Theory
Francesco Mori
Stefano Sarao Mannelli
Francesca Mignacco
36
3
0
26 Sep 2024
Optimal sequencing depth for single-cell RNA-sequencing in Wasserstein space
Jakwang Kim
Sharvaj Kubal
Geoffrey Schiebinger
24
1
0
22 Sep 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
38
3
0
22 Sep 2024
Graph Classification with GNNs: Optimisation, Representation and Inductive Bias
P. Krishna Kumar a
H. G. Ramaswamy
29
0
0
17 Aug 2024
Absence of Closed-Form Descriptions for Gradient Flow in Two-Layer Narrow Networks
Yeachan Park
AI4CE
25
0
0
15 Aug 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
35
6
0
14 Aug 2024
A spring-block theory of feature learning in deep neural networks
Chengzhi Shi
Liming Pan
Ivan Dokmanić
AI4CE
40
1
0
28 Jul 2024
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
Nirmit Joshi
Theodor Misiakiewicz
Nathan Srebro
26
6
0
08 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
91
2
0
08 Jul 2024
Prospective Messaging: Learning in Networks with Communication Delays
Ryan Fayyazi
Christian Weilbach
Frank D. Wood
25
0
0
07 Jul 2024
Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view
Mihailo Stojnic
27
1
0
13 Jun 2024
Ridge interpolators in correlated factor regression models -- exact risk analysis
Mihailo Stojnic
20
1
0
13 Jun 2024
1
2
3
4
...
8
9
10
Next