Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 483 papers shown
Title
Gradient flows on graphons: existence, convergence, continuity equations
Sewoong Oh
Soumik Pal
Raghav Somani
Raghavendra Tripathi
20
5
0
18 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
38
13
0
03 Nov 2021
Limiting fluctuation and trajectorial stability of multilayer neural networks with mean field training
H. Pham
Phan-Minh Nguyen
10
6
0
29 Oct 2021
A Riemannian Mean Field Formulation for Two-layer Neural Networks with Batch Normalization
Chao Ma
Lexing Ying
MLT
16
2
0
17 Oct 2021
Gradient Descent on Infinitely Wide Neural Networks: Global Convergence and Generalization
Francis R. Bach
Lénaïc Chizat
MLT
23
23
0
15 Oct 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
55
11
0
13 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
79
10
0
13 Oct 2021
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
Junzhe Zhang
Haochuan Li
S. Sra
Ali Jadbabaie
66
9
0
12 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
50
6
0
12 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
31
13
0
12 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
99
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
41
11
0
06 Oct 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
19
30
0
08 Sep 2021
Existence, uniqueness, and convergence rates for gradient flows in the training of artificial neural networks with ReLU activation
Simon Eberle
Arnulf Jentzen
Adrian Riekert
G. Weiss
36
12
0
18 Aug 2021
Optimizing full 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance Imaging
R. ChaithyaG.
P. Weiss
Guillaume Daval-Frérot
Aurélien Massire
A. Vignaud
P. Ciuciu
11
8
0
06 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations
Pranjal Awasthi
Alex K. Tang
Aravindan Vijayaraghavan
MLT
18
20
0
21 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
35
6
0
11 Jul 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
27
23
0
09 Jul 2021
Continual Learning in the Teacher-Student Setup: Impact of Task Similarity
Sebastian Lee
Sebastian Goldt
Andrew M. Saxe
CLL
32
73
0
09 Jul 2021
Provable Convergence of Nesterov's Accelerated Gradient Method for Over-Parameterized Neural Networks
Xin Liu
Zhisong Pan
Wei Tao
14
8
0
05 Jul 2021
Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity
Arthur Jacot
François Ged
Berfin cSimcsek
Clément Hongler
Franck Gabriel
29
52
0
30 Jun 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
26
25
0
25 Jun 2021
Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity
Scott Pesme
Loucas Pillaud-Vivien
Nicolas Flammarion
27
99
0
17 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
A. Gretton
49
37
0
16 Jun 2021
Extracting Global Dynamics of Loss Landscape in Deep Learning Models
Mohammed Eslami
Hamed Eramian
Marcio Gameiro
W. Kalies
Konstantin Mischaikow
23
1
0
14 Jun 2021
Understanding Deflation Process in Over-parametrized Tensor Decomposition
Rong Ge
Y. Ren
Xiang Wang
Mo Zhou
8
17
0
11 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting
Shunta Akiyama
Taiji Suzuki
MLT
19
13
0
11 Jun 2021
Ghosts in Neural Networks: Existence, Structure and Role of Infinite-Dimensional Null Space
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
BDL
17
9
0
09 Jun 2021
LEADS: Learning Dynamical Systems that Generalize Across Environments
Yuan Yin
Ibrahim Ayed
Emmanuel de Bézenac
Nicolas Baskiotis
Patrick Gallinari
OOD
18
29
0
08 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
30
33
0
07 Jun 2021
Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks
Melih Barsbey
Milad Sefidgaran
Murat A. Erdogdu
Gaël Richard
Umut Simsekli
14
41
0
07 Jun 2021
Redundant representations help generalization in wide neural networks
Diego Doimo
Aldo Glielmo
Sebastian Goldt
A. Laio
AI4CE
27
9
0
07 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis
Stephan Wojtowytsch
33
33
0
04 Jun 2021
Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central Path
X. Y. Han
Vardan Papyan
D. Donoho
AAML
30
136
0
03 Jun 2021
Embedding Principle of Loss Landscape of Deep Neural Networks
Yaoyu Zhang
Zhongwang Zhang
Tao Luo
Z. Xu
11
34
0
30 May 2021
Overparameterization of deep ResNet: zero loss and mean-field analysis
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
ODL
25
24
0
30 May 2021
Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances
Berfin cSimcsek
François Ged
Arthur Jacot
Francesco Spadaro
Clément Hongler
W. Gerstner
Johanni Brea
AI4CE
36
91
0
25 May 2021
Towards Understanding the Condensation of Neural Networks at Initial Training
Hanxu Zhou
Qixuan Zhou
Tao Luo
Yaoyu Zhang
Z. Xu
MLT
AI4CE
21
26
0
25 May 2021
Frank-Wolfe Methods in Probability Space
Carson Kent
Jose H. Blanchet
Peter Glynn
9
9
0
11 May 2021
Global Convergence of Three-layer Neural Networks in the Mean Field Regime
H. Pham
Phan-Minh Nguyen
MLT
AI4CE
41
19
0
11 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
38
15
0
06 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
29
23
0
05 May 2021
Universal scaling laws in the gradient descent training of neural networks
Maksim Velikanov
Dmitry Yarotsky
46
9
0
02 May 2021
One-pass Stochastic Gradient Descent in Overparametrized Two-layer Neural Networks
Hanjing Zhu
Hanjing Zhu
MLT
11
3
0
01 May 2021
Previous
1
2
3
...
10
5
6
7
8
9
Next