Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.09545
Cited By
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
24 May 2018
Lénaïc Chizat
Francis R. Bach
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport"
50 / 483 papers shown
Title
Learning and generalization of one-hidden-layer neural networks, going beyond standard Gaussian data
Hongkang Li
Shuai Zhang
Hao Wu
MLT
21
8
0
07 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
22
114
0
30 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
33
31
0
20 Jun 2022
Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM
Pierre-Cyril Aubin-Frankowski
Anna Korba
F. Léger
18
28
0
17 Jun 2022
The Manifold Hypothesis for Gradient-Based Explanations
Sebastian Bordt
Uddeshya Upadhyay
Zeynep Akata
U. V. Luxburg
FAtt
AAML
28
12
0
15 Jun 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
33
4
0
14 Jun 2022
Parameter Convex Neural Networks
Jingcheng Zhou
Wei Wei
Xing Li
Bowen Pang
Zhiming Zheng
6
0
0
11 Jun 2022
Explicit Regularization in Overparametrized Models via Noise Injection
Antonio Orvieto
Anant Raj
Hans Kersting
Francis R. Bach
10
26
0
09 Jun 2022
Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks
Huishuai Zhang
Da Yu
Yiping Lu
Di He
AAML
27
1
0
09 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
23
71
0
08 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
62
58
0
08 Jun 2022
The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
38
36
0
06 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
24
58
0
02 Jun 2022
Self-Consistency of the Fokker-Planck Equation
Zebang Shen
Zhenfu Wang
Satyen Kale
Alejandro Ribeiro
Aim Karbasi
Hamed Hassani
18
17
0
02 Jun 2022
Universality of Group Convolutional Neural Networks Based on Ridgelet Analysis on Groups
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
30
9
0
30 May 2022
Excess Risk of Two-Layer ReLU Neural Networks in Teacher-Student Settings and its Superiority to Kernel Methods
Shunta Akiyama
Taiji Suzuki
30
6
0
30 May 2022
On Bridging the Gap between Mean Field and Finite Width in Deep Random Neural Networks with Batch Normalization
Amir Joudaki
Hadi Daneshmand
Francis R. Bach
AI4CE
19
2
0
25 May 2022
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
Harley Wiltzer
D. Meger
Marc G. Bellemare
19
12
0
24 May 2022
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Hanxu Zhou
Qixuan Zhou
Zhenyuan Jin
Tao Luo
Yaoyu Zhang
Zhi-Qin John Xu
25
20
0
24 May 2022
Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with Linear Convergence Rates
Jingwei Zhang
Xunpeng Huang
Jincheng Yu
MLT
18
1
0
19 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
78
0
19 May 2022
Sharp asymptotics on the compression of two-layer neural networks
Mohammad Hossein Amani
Simone Bombari
Marco Mondelli
Rattana Pukdee
Stefano Rini
MLT
24
0
0
17 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
40
121
0
03 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Polynomial-time Sparse Measure Recovery: From Mean Field Theory to Algorithm Design
Hadi Daneshmand
Francis R. Bach
10
1
0
16 Apr 2022
Overparameterized Linear Regression under Adversarial Attacks
Antônio H. Ribeiro
Thomas B. Schon
AAML
14
18
0
13 Apr 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Estimation of high dimensional Gamma convolutions through random projections
Oskar Laverny
11
1
0
25 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
32
13
0
22 Mar 2022
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
9
4
0
10 Mar 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
21
15
0
03 Mar 2022
Explicitising The Implicit Intrepretability of Deep Neural Networks Via Duality
Chandrashekar Lakshminarayanan
Ashutosh Kumar Singh
A. Rajkumar
AI4CE
26
1
0
01 Mar 2022
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
35
15
0
25 Feb 2022
A Distributed Algorithm for Measure-valued Optimization with Additive Objective
Iman Nodozi
A. Halder
15
1
0
17 Feb 2022
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
32
11
0
15 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
18
3
0
14 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
68
64
0
25 Jan 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
30
11
0
18 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
43
0
0
03 Jan 2022
How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning -- an Exact Macroscopic Characterization
Jakob Heiss
Josef Teichmann
Hanna Wutte
MLT
10
2
0
31 Dec 2021
Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic
Yufeng Zhang
Siyu Chen
Zhuoran Yang
Michael I. Jordan
Zhaoran Wang
68
4
0
27 Dec 2021
Global convergence of ResNets: From finite to infinite width using linear parameterization
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
16
12
0
10 Dec 2021
Asymptotic properties of one-layer artificial neural networks with sparse connectivity
Christian Hirsch
Matthias Neumann
Volker Schmidt
21
1
0
01 Dec 2021
Convergence of GANs Training: A Game and Stochastic Control Methodology
Othmane Mounjid
Xin Guo
GAN
22
2
0
01 Dec 2021
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Tao Luo
Z. Xu
29
21
0
30 Nov 2021
Previous
1
2
3
4
5
6
...
8
9
10
Next