Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08328
Cited By
Verifiable Reinforcement Learning via Policy Extraction
22 May 2018
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Verifiable Reinforcement Learning via Policy Extraction"
50 / 167 papers shown
Title
Uniformly Conservative Exploration in Reinforcement Learning
Wanqiao Xu
Yecheng Jason Ma
Kan Xu
Hamsa Bastani
Osbert Bastani
OffRL
17
3
0
25 Oct 2021
Synthesizing Machine Learning Programs with PAC Guarantees via Statistical Sketching
Osbert Bastani
28
0
0
11 Oct 2021
Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems
Lisa Oakley
Alina Oprea
S. Tripakis
AAML
21
0
0
05 Oct 2021
ProTo: Program-Guided Transformer for Program-Guided Tasks
Zelin Zhao
Karan Samel
Binghong Chen
Le Song
ViT
LM&Ro
34
30
0
02 Oct 2021
Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems through Probabilistic Model Checking
Yizhen Dong
Xingyu Zhao
Xiaowei Huang
35
6
0
14 Sep 2021
Learning to Synthesize Programs as Interpretable and Generalizable Policies
Dweep Trivedi
Jesse Zhang
Shao-Hua Sun
Joseph J. Lim
NAI
24
72
0
31 Aug 2021
Improving Human Sequential Decision-Making with Reinforcement Learning
Hamsa Bastani
Osbert Bastani
W. Sinchaisri
HAI
OffRL
25
12
0
19 Aug 2021
Neural-to-Tree Policy Distillation with Policy Improvement Criterion
Zhaorong Li
Yang Yu
Yingfeng Chen
Ke Chen
Zhipeng Hu
Changjie Fan
31
5
0
16 Aug 2021
Unsupervised Learning of Neurosymbolic Encoders
Eric Zhan
Jennifer J. Sun
Ann Kennedy
Yisong Yue
Swarat Chaudhuri
22
13
0
28 Jul 2021
Learning on Abstract Domains: A New Approach for Verifiable Guarantee in Reinforcement Learning
Peng-yun Jin
Min Zhang
Jianwen Li
Li Han
Xuejun Wen
OffRL
16
3
0
13 Jun 2021
Feature-Based Interpretable Reinforcement Learning based on State-Transition Models
Omid Davoodi
Majid Komeili
FAtt
OffRL
24
6
0
14 May 2021
Rule-based Shielding for Partially Observable Monte-Carlo Planning
Giulio Mazzi
A. Castellini
Alessandro Farinelli
13
14
0
28 Apr 2021
XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision Trees
Aaron M. Roth
Jing Liang
Tianyi Zhou
52
8
0
22 Apr 2021
Scalable Synthesis of Verified Controllers in Deep Reinforcement Learning
Zikang Xiong
Suresh Jagannathan
32
6
0
20 Apr 2021
Provable Repair of Deep Neural Networks
Matthew Sotoudeh
Aditya V. Thakur
AAML
21
70
0
09 Apr 2021
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
46
55
0
06 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
Learning Symbolic Rules for Interpretable Deep Reinforcement Learning
Zhihao Ma
Yuzheng Zhuang
Paul Weng
Hankui Zhuo
Dong Li
Wulong Liu
Jianye Hao
NAI
51
14
0
15 Mar 2021
GRIT: Fast, Interpretable, and Verifiable Goal Recognition with Learned Decision Trees for Autonomous Driving
Cillian Brewitt
Balint Gyevnar
Samuel Garcin
Stefano V. Albrecht
18
30
0
10 Mar 2021
Generating Probabilistic Safety Guarantees for Neural Network Controllers
Sydney M. Katz
Kyle D. Julian
Christopher A. Strong
Mykel J. Kochenderfer
32
6
0
01 Mar 2021
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods
Nicholay Topin
Stephanie Milani
Fei Fang
Manuela Veloso
OffRL
29
32
0
25 Feb 2021
Program Synthesis Guided Reinforcement Learning for Partially Observed Environments
Yichen Yang
J. Inala
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
Martin Rinard
42
12
0
22 Feb 2021
SyReNN: A Tool for Analyzing Deep Neural Networks
Matthew Sotoudeh
Aditya V. Thakur
AAML
GNN
40
16
0
09 Jan 2021
Neurosymbolic Transformers for Multi-Agent Communication
J. Inala
Yichen Yang
James Paulos
Yewen Pu
Osbert Bastani
Vijay Kumar
Martin Rinard
Armando Solar-Lezama
32
24
0
05 Jan 2021
Identification of Unexpected Decisions in Partially Observable Monte-Carlo Planning: a Rule-Based Approach
Giulio Mazzi
A. Castellini
Alessandro Farinelli
26
9
0
23 Dec 2020
Demystifying Deep Neural Networks Through Interpretation: A Survey
Giang Dao
Minwoo Lee
FaML
FAtt
22
1
0
13 Dec 2020
CDT: Cascading Decision Trees for Explainable Reinforcement Learning
Zihan Ding
Pablo Hernandez-Leal
G. Ding
Changjian Li
Ruitong Huang
12
21
0
15 Nov 2020
Designing Interpretable Approximations to Deep Reinforcement Learning
Nathan Dahlin
K. C. Kalagarla
Nikhil Naik
Rahul Jain
Pierluigi Nuzzo
11
9
0
28 Oct 2020
Towards Interpretable-AI Policies Induction using Evolutionary Nonlinear Decision Trees for Discrete Action Systems
Yashesh D. Dhebar
Kalyanmoy Deb
S. Nageshrao
Ling Zhu
Dimitar Filev
8
16
0
20 Sep 2020
Deep Learning & Software Engineering: State of Research and Future Directions
P. Devanbu
Matthew B. Dwyer
Sebastian G. Elbaum
M. Lowry
Kevin Moran
Denys Poshyvanyk
Baishakhi Ray
Rishabh Singh
Xiangyu Zhang
11
22
0
17 Sep 2020
TripleTree: A Versatile Interpretable Representation of Black Box Agents and their Environments
Tom Bewley
J. Lawry
FAtt
13
25
0
10 Sep 2020
On
ℓ
p
\ell_p
ℓ
p
-norm Robustness of Ensemble Stumps and Trees
Yihan Wang
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
AAML
20
7
0
20 Aug 2020
MurTree: Optimal Classification Trees via Dynamic Programming and Search
Emir Demirović
Anna Lukina
E. Hébrard
Jeffrey Chan
James Bailey
C. Leckie
K. Ramamohanarao
Peter Stuckey
19
63
0
24 Jul 2020
Am I Building a White Box Agent or Interpreting a Black Box Agent?
Tom Bewley
11
1
0
02 Jul 2020
IReEn: Reverse-Engineering of Black-Box Functions via Iterative Neural Program Synthesis
Hossein Hajipour
Mateusz Malinowski
Mario Fritz
MIACV
9
3
0
18 Jun 2020
Continuous Action Reinforcement Learning from a Mixture of Interpretable Experts
R. Akrour
Davide Tateo
Jan Peters
28
21
0
10 Jun 2020
PLANS: Robust Program Learning from Neurally Inferred Specifications
Raphaël Dang-Nhu
22
2
0
05 Jun 2020
Formal Methods with a Touch of Magic
P. A. Alamdari
Guy Avni
T. Henzinger
Anna Lukina
OffRL
12
16
0
25 May 2020
Automatic Discovery of Interpretable Planning Strategies
Julian Skirzyñski
Frederic Becker
Falk Lieder
21
15
0
24 May 2020
Probabilistic Guarantees for Safe Deep Reinforcement Learning
E. Bacci
David Parker
19
27
0
14 May 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
A Multi-Agent Reinforcement Learning Approach For Safe and Efficient Behavior Planning Of Connected Autonomous Vehicles
Songyang Han
Shangli Zhou
Jiangwei Wang
Lynn Pepin
Caiwen Ding
Jie Fu
Fei Miao
34
22
0
09 Mar 2020
Learning by Cheating
Dian Chen
Brady Zhou
V. Koltun
Philipp Krahenbuhl
SSL
47
504
0
27 Dec 2019
MAMPS: Safe Multi-Agent Reinforcement Learning via Model Predictive Shielding
Wenbo Zhang
Osbert Bastani
Vijay Kumar
14
39
0
25 Oct 2019
Robust Model Predictive Shielding for Safe Reinforcement Learning with Stochastic Dynamics
Shuo Li
Osbert Bastani
25
81
0
24 Oct 2019
Interpreting Deep Learning-Based Networking Systems
Zili Meng
Minhu Wang
Jia-Ju Bai
Mingwei Xu
Hongzi Mao
Hongxin Hu
AI4CE
30
3
0
09 Oct 2019
Formal Language Constraints for Markov Decision Processes
Eleanor Quint
Dong Xu
Haluk Dogan
Stephen Scott
Matthew B. Dwyer
AI4CE
17
3
0
02 Oct 2019
Reinforcement Learning in Healthcare: A Survey
Chao Yu
Jiming Liu
S. Nemati
LM&MA
OffRL
28
550
0
22 Aug 2019
A Symbolic Neural Network Representation and its Application to Understanding, Verifying, and Patching Networks
Matthew Sotoudeh
Aditya V. Thakur
6
4
0
17 Aug 2019
An Inductive Synthesis Framework for Verifiable Reinforcement Learning
He Zhu
Zikang Xiong
Stephen Magill
Suresh Jagannathan
33
93
0
16 Jul 2019
Previous
1
2
3
4
Next