ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13060
17
3

Uniformly Conservative Exploration in Reinforcement Learning

25 October 2021
Wanqiao Xu
Yecheng Jason Ma
Kan Xu
Hamsa Bastani
Osbert Bastani
    OffRL
ArXivPDFHTML
Abstract

A key challenge to deploying reinforcement learning in practice is avoiding excessive (harmful) exploration in individual episodes. We propose a natural constraint on exploration -- \textit{uniformly} outperforming a conservative policy (adaptively estimated from all data observed thus far), up to a per-episode exploration budget. We design a novel algorithm that uses a UCB reinforcement learning policy for exploration, but overrides it as needed to satisfy our exploration constraint with high probability. Importantly, to ensure unbiased exploration across the state space, our algorithm adaptively determines when to explore. We prove that our approach remains conservative while minimizing regret in the tabular setting. We experimentally validate our results on a sepsis treatment task and an HIV treatment task, demonstrating that our algorithm can learn while ensuring good performance compared to the baseline policy for every patient; the latter task also demonstrates that our approach extends to continuous state spaces via deep reinforcement learning.

View on arXiv
Comments on this paper