Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08328
Cited By
Verifiable Reinforcement Learning via Policy Extraction
22 May 2018
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Verifiable Reinforcement Learning via Policy Extraction"
50 / 167 papers shown
Title
Learning of Generalizable and Interpretable Knowledge in Grid-Based Reinforcement Learning Environments
Manuel Eberhardinger
Johannes Maucher
S. Maghsudi
37
4
0
07 Sep 2023
On Reducing Undesirable Behavior in Deep Reinforcement Learning Models
Ophir M. Carmel
Guy Katz
40
0
0
06 Sep 2023
Neurosymbolic Reinforcement Learning and Planning: A Survey
Kamal Acharya
Waleed Raza
Carlos Dourado
Alvaro Velasquez
Houbing Song
NAI
OffRL
32
16
0
02 Sep 2023
Learning to Identify Critical States for Reinforcement Learning from Videos
Haozhe Liu
Mingchen Zhuge
Bing Li
Yu‐Han Wang
Francesco Faccio
Guohao Li
Jürgen Schmidhuber
OffRL
28
6
0
15 Aug 2023
Synthesizing Programmatic Policies with Actor-Critic Algorithms and ReLU Networks
S. Orfanos
Levi H. S. Lelis
27
6
0
04 Aug 2023
Can You Improve My Code? Optimizing Programs with Local Search
Fatemeh Abdollahi
Saqib Ameen
Matthew E. Taylor
Levi H. S. Lelis
22
0
0
10 Jul 2023
Choosing Well Your Opponents: How to Guide the Synthesis of Programmatic Strategies
Rubens O. Moraes
David S. Aleixo
Lucas N. Ferreira
Levi H. S. Lelis
16
7
0
10 Jul 2023
Learning Interpretable Models of Aircraft Handling Behaviour by Reinforcement Learning from Human Feedback
Tom Bewley
J. Lawry
Arthur G. Richards
30
1
0
26 May 2023
N
A
2
\text{A}^\text{2}
A
2
Q: Neural Attention Additive Model for Interpretable Multi-Agent Q-Learning
Zichuan Liu
Yuanyang Zhu
Chunlin Chen
47
10
0
26 Apr 2023
Reinforcement Learning with Knowledge Representation and Reasoning: A Brief Survey
Chao Yu
Xuejing Zheng
H. Zhuo
OffRL
LRM
55
7
0
24 Apr 2023
How to Control Hydrodynamic Force on Fluidic Pinball via Deep Reinforcement Learning
Haodong Feng
Yue Wang
Hui Xiang
Zhiyang Jin
Dixia Fan
AI4CE
26
8
0
23 Apr 2023
Exact and Cost-Effective Automated Transformation of Neural Network Controllers to Decision Tree Controllers
K. Chang
Nathan Dahlin
Rahul Jain
Pierluigi Nuzzo
OffRL
16
0
0
11 Apr 2023
Optimal Interpretability-Performance Trade-off of Classification Trees with Black-Box Reinforcement Learning
Hector Kohler
R. Akrour
Philippe Preux
OffRL
24
1
0
11 Apr 2023
Safe Reinforcement Learning via Probabilistic Logic Shields
Wen-Chi Yang
G. Marra
Gavin Rens
Luc de Raedt
OffRL
46
30
0
06 Mar 2023
CrystalBox: Future-Based Explanations for Input-Driven Deep RL Systems
Sagar Patel
Sangeetha Abdu Jyothi
Nina Narodytska
OffRL
16
0
0
27 Feb 2023
Shared Information-Based Safe And Efficient Behavior Planning For Connected Autonomous Vehicles
Songyang Han
Shangli Zhou
Lynn Pepin
Jiangwei Wang
Caiwen Ding
Fei Miao
21
1
0
08 Feb 2023
Optimal Decision Tree Policies for Markov Decision Processes
D. Vos
S. Verwer
OffRL
27
9
0
30 Jan 2023
Hierarchical Programmatic Reinforcement Learning via Learning to Compose Programs
Guanhui. Liu
En-Pei Hu
Pu-Jen Cheng
Hung-yi Lee
Shao-Hua Sun
74
18
0
30 Jan 2023
Explainable Deep Reinforcement Learning: State of the Art and Challenges
G. Vouros
XAI
52
77
0
24 Jan 2023
XDQN: Inherently Interpretable DQN through Mimicking
Andreas Kontogiannis
G. Vouros
24
1
0
08 Jan 2023
Symbolic Visual Reinforcement Learning: A Scalable Framework with Object-Level Abstraction and Differentiable Expression Search
Wenqing Zheng
S. Sharan
Zhiwen Fan
Kevin Wang
Yihan Xi
Zhangyang Wang
58
9
0
30 Dec 2022
On Transforming Reinforcement Learning by Transformer: The Development Trajectory
Shengchao Hu
Li Shen
Ya Zhang
Yixin Chen
Dacheng Tao
OffRL
30
25
0
29 Dec 2022
Decisions that Explain Themselves: A User-Centric Deep Reinforcement Learning Explanation System
Xiaoran Wu
Zihan Yan
Chongjie Zhang
Tongshuang Wu
24
1
0
01 Dec 2022
Explainable Action Advising for Multi-Agent Reinforcement Learning
Yue (Sophie) Guo
Joseph Campbell
Simon Stepputtis
Ruiyu Li
Dana Hughes
Fei Fang
Katia Sycara
27
14
0
15 Nov 2022
(When) Are Contrastive Explanations of Reinforcement Learning Helpful?
Sanjana Narayanan
Isaac Lage
Finale Doshi-Velez
OffRL
12
1
0
14 Nov 2022
A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges
Yunpeng Qing
Shunyu Liu
Mingli Song
Huiqiong Wang
Mingli Song
XAI
35
1
0
12 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
24
7
0
06 Nov 2022
On the Safety of Interpretable Machine Learning: A Maximum Deviation Approach
Dennis L. Wei
Rahul Nair
Amit Dhurandhar
Kush R. Varshney
Elizabeth M. Daly
Moninder Singh
FAtt
38
9
0
02 Nov 2022
Neurosymbolic Motion and Task Planning for Linear Temporal Logic Tasks
Xiaowu Sun
Yasser Shoukry
48
11
0
11 Oct 2022
Reward Learning with Trees: Methods and Evaluation
Tom Bewley
J. Lawry
Arthur G. Richards
R. Craddock
Ian Henderson
23
1
0
03 Oct 2022
Guiding Safe Exploration with Weakest Preconditions
Greg Anderson
Swarat Chaudhuri
Işıl Dillig
46
6
0
28 Sep 2022
MSVIPER: Improved Policy Distillation for Reinforcement-Learning-Based Robot Navigation
Aaron M. Roth
Jing Liang
Ram D. Sriram
Elham Tabassi
Tianyi Zhou
34
1
0
19 Sep 2022
There is no Accuracy-Interpretability Tradeoff in Reinforcement Learning for Mazes
Yishay Mansour
Michal Moshkovitz
Cynthia Rudin
FAtt
41
3
0
09 Jun 2022
GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis
Yushi Cao
Zhiming Li
Tianpei Yang
Hao Zhang
Yan Zheng
Yi Li
Jianye Hao
Yang Liu
NAI
38
16
0
27 May 2022
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning
Stephanie Milani
Zhicheng Zhang
Nicholay Topin
Z. Shi
Charles A. Kamhoua
Evangelos E. Papalexakis
Fei Fang
OffRL
83
13
0
25 May 2022
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Shangding Gu
Longyu Yang
Yali Du
Guang Chen
Florian Walter
Jun Wang
Alois C. Knoll
OffRL
AI4TS
117
241
0
20 May 2022
Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking
Hanna Krasowski
Jakob Thumm
Marlon Müller
Lukas Schäfer
Xiao Wang
Matthias Althoff
88
20
0
13 May 2022
What can we Learn Even From the Weakest? Learning Sketches for Programmatic Strategies
L. C. Medeiros
David S. Aleixo
Levi H. S. Lelis
24
15
0
22 Mar 2022
Safe Neurosymbolic Learning with Differentiable Symbolic Execution
Chenxi Yang
Swarat Chaudhuri
27
9
0
15 Mar 2022
Keeping Minimal Experience to Achieve Efficient Interpretable Policy Distillation
Xiao Liu
Shuyang Liu
Wenbin Li
Shangdong Yang
Yang Gao
OffRL
11
0
0
02 Mar 2022
A Survey of Explainable Reinforcement Learning
Stephanie Milani
Nicholay Topin
Manuela Veloso
Fei Fang
XAI
LRM
30
52
0
17 Feb 2022
Local Explanations for Reinforcement Learning
Ronny Luss
Amit Dhurandhar
Miao Liu
FAtt
OffRL
16
3
0
08 Feb 2022
Learning Interpretable, High-Performing Policies for Autonomous Driving
Rohan R. Paleja
Yaru Niu
Andrew Silva
Chace Ritchie
Sugju Choi
Matthew C. Gombolay
27
16
0
04 Feb 2022
Learning Two-Step Hybrid Policy for Graph-Based Interpretable Reinforcement Learning
Tongzhou Mu
Kaixiang Lin
Fei Niu
Govind Thattai
OffRL
25
0
0
21 Jan 2022
Programmatic Policy Extraction by Iterative Local Search
Rasmus Larsen
Mikkel N. Schmidt
13
0
0
18 Jan 2022
Summarising and Comparing Agent Dynamics with Contrastive Spatiotemporal Abstraction
Tom Bewley
J. Lawry
Arthur G. Richards
27
3
0
17 Jan 2022
Verified Probabilistic Policies for Deep Reinforcement Learning
E. Bacci
David Parker
24
4
0
10 Jan 2022
A Survey on Interpretable Reinforcement Learning
Claire Glanois
Paul Weng
Matthieu Zimmer
Dong Li
Tianpei Yang
Jianye Hao
Wulong Liu
OffRL
23
95
0
24 Dec 2021
Programming with Neural Surrogates of Programs
Alex Renda
Yi Ding
Michael Carbin
24
2
0
12 Dec 2021
Temporal-Spatial Causal Interpretations for Vision-Based Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Cheng Wu
34
9
0
06 Dec 2021
Previous
1
2
3
4
Next