Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.11271
Cited By
Gaussian Process Behaviour in Wide Deep Neural Networks
30 April 2018
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Behaviour in Wide Deep Neural Networks"
50 / 391 papers shown
Title
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
39
13
0
22 Mar 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
26
34
0
17 Mar 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
34
0
0
14 Mar 2022
Quantitative Gaussian Approximation of Randomly Initialized Deep Neural Networks
Andrea Basteri
Dario Trevisan
BDL
24
20
0
14 Mar 2022
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
17
4
0
10 Mar 2022
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
26
149
0
07 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
67
7
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
Cengiz Pehlevan
BDL
MLT
28
27
0
01 Mar 2022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
W. Bruinsma
David R. Burt
Weiwei Pan
Finale Doshi-Velez
UQCV
BDL
44
22
0
23 Feb 2022
A duality connecting neural network and cosmological dynamics
Sven Krippendorf
M. Spannowsky
AI4CE
30
8
0
22 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
37
12
0
22 Feb 2022
Learning from Randomly Initialized Neural Network Features
Ehsan Amid
Rohan Anil
W. Kotłowski
Manfred K. Warmuth
MLT
24
14
0
13 Feb 2022
Lossy Gradient Compression: How Much Accuracy Can One Bit Buy?
Sadaf Salehkalaibar
Stefano Rini
FedML
35
4
0
06 Feb 2022
Learning Representation from Neural Fisher Kernel with Low-rank Approximation
Ruixiang Zhang
Shuangfei Zhai
Etai Littwin
J. Susskind
SSL
36
3
0
04 Feb 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Neural Tangent Kernel Beyond the Infinite-Width Limit: Effects of Depth and Initialization
Mariia Seleznova
Gitta Kutyniok
179
16
0
01 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
34
3
0
30 Jan 2022
Kernel Methods and Multi-layer Perceptrons Learn Linear Models in High Dimensions
Mojtaba Sahraee-Ardakan
M. Emami
Parthe Pandit
S. Rangan
A. Fletcher
41
9
0
20 Jan 2022
Deep convolutional neural network for shape optimization using level-set approach
Wrik Mallik
N. Farvolden
J. Jelovica
R. Jaiman
11
3
0
17 Jan 2022
On neural network kernels and the storage capacity problem
Jacob A. Zavatone-Veth
Cengiz Pehlevan
6
6
0
12 Jan 2022
Eigenvalue Distribution of Large Random Matrices Arising in Deep Neural Networks: Orthogonal Case
L. Pastur
19
5
0
12 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
35
51
0
31 Dec 2021
Bayesian neural network priors for edge-preserving inversion
Chen Li
Matthew M. Dunlop
G. Stadler
20
12
0
20 Dec 2021
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
47
4
0
18 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
26
4
0
14 Dec 2021
Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks
Lechao Xiao
34
22
0
10 Dec 2021
Infinite Neural Network Quantum States: Entanglement and Training Dynamics
Di Luo
James Halverson
25
6
0
01 Dec 2021
Dependence between Bayesian neural network units
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
28
3
0
29 Nov 2021
Critical Initialization of Wide and Deep Neural Networks through Partial Jacobians: General Theory and Applications
Darshil Doshi
Tianyu He
Andrey Gromov
30
8
0
23 Nov 2021
Depth induces scale-averaging in overparameterized linear Bayesian neural networks
Jacob A. Zavatone-Veth
Cengiz Pehlevan
BDL
UQCV
MDE
41
9
0
23 Nov 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Periodic Activation Functions Induce Stationarity
Lassi Meronen
Martin Trapp
Arno Solin
BDL
22
20
0
26 Oct 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
14
17
0
23 Oct 2021
Feature Learning and Signal Propagation in Deep Neural Networks
Yizhang Lou
Chris Mingard
Yoonsoo Nam
Soufiane Hayou
MDE
29
17
0
22 Oct 2021
On out-of-distribution detection with Bayesian neural networks
Francesco DÁngelo
Christian Henning
BDL
UQCV
26
6
0
12 Oct 2021
Kernel Interpolation as a Bayes Point Machine
Jeremy Bernstein
Alexander R. Farhang
Yisong Yue
BDL
32
4
0
08 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
54
9
0
06 Oct 2021
On the Impact of Stable Ranks in Deep Nets
B. Georgiev
L. Franken
Mayukh Mukherjee
Georgios Arvanitidis
21
3
0
05 Oct 2021
Random matrices in service of ML footprint: ternary random features with no performance loss
Hafiz Tiomoko Ali
Zhenyu Liao
Romain Couillet
44
7
0
05 Oct 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
37
18
0
20 Sep 2021
Uniform Generalization Bounds for Overparameterized Neural Networks
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
25
19
0
13 Sep 2021
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
32
10
0
30 Aug 2021
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
41
30
0
03 Aug 2021
Deep Stable neural networks: large-width asymptotics and convergence rates
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
30
14
0
02 Aug 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
231
0
27 Jul 2021
A variational approximate posterior for the deep Wishart process
Sebastian W. Ober
Laurence Aitchison
BDL
24
11
0
21 Jul 2021
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
30
98
0
19 Jul 2021
Understanding the Distributions of Aggregation Layers in Deep Neural Networks
Eng-Jon Ong
S. Husain
M. Bober
FAtt
FedML
AI4CE
11
2
0
09 Jul 2021
Logit-based Uncertainty Measure in Classification
Huiyue Wu
Diego Klabjan
EDL
BDL
UQCV
20
6
0
06 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
44
0
04 Jul 2021
Previous
1
2
3
4
5
6
7
8
Next