ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.11271
  4. Cited By
Gaussian Process Behaviour in Wide Deep Neural Networks

Gaussian Process Behaviour in Wide Deep Neural Networks

30 April 2018
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
    BDL
ArXivPDFHTML

Papers citing "Gaussian Process Behaviour in Wide Deep Neural Networks"

50 / 391 papers shown
Title
On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case
On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case
L. Pastur
V. Slavin
CML
24
12
0
20 Nov 2020
Towards NNGP-guided Neural Architecture Search
Towards NNGP-guided Neural Architecture Search
Daniel S. Park
Jaehoon Lee
Daiyi Peng
Yuan Cao
Jascha Narain Sohl-Dickstein
BDL
26
33
0
11 Nov 2020
Kernel Dependence Network
Kernel Dependence Network
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
16
0
0
04 Nov 2020
Which Minimizer Does My Neural Network Converge To?
Which Minimizer Does My Neural Network Converge To?
Manuel Nonnenmacher
David Reeb
Ingo Steinwart
ODL
8
4
0
04 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural
  Network Representations Vary with Width and Depth
Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth
Thao Nguyen
M. Raghu
Simon Kornblith
OOD
13
264
0
29 Oct 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
A Probabilistic Representation of Deep Learning for Improving The
  Information Theoretic Interpretability
A Probabilistic Representation of Deep Learning for Improving The Information Theoretic Interpretability
Xinjie Lan
Kenneth Barner
FAtt
19
2
0
27 Oct 2020
Stable ResNet
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Label-Aware Neural Tangent Kernel: Toward Better Generalization and
  Local Elasticity
Label-Aware Neural Tangent Kernel: Toward Better Generalization and Local Elasticity
Shuxiao Chen
Hangfeng He
Weijie J. Su
12
23
0
22 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCV
BDL
14
18
0
19 Oct 2020
The Ridgelet Prior: A Covariance Function Approach to Prior
  Specification for Bayesian Neural Networks
The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks
Takuo Matsubara
Chris J. Oates
F. Briol
BDL
UQCV
21
17
0
16 Oct 2020
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
  in the Infinite-Width Limit
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
Jaehoon Lee
Lechao Xiao
Jeffrey Pennington
Jasper Snoek
UQCV
BDL
28
15
0
14 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
34
888
0
14 Oct 2020
Deep kernel processes
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
24
41
0
04 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
30
86
0
30 Sep 2020
Improving Query Efficiency of Black-box Adversarial Attack
Improving Query Efficiency of Black-box Adversarial Attack
Yang Bai
Yuyuan Zeng
Yong Jiang
Yisen Wang
Shutao Xia
Weiwei Guo
AAML
MLAU
37
52
0
24 Sep 2020
Tensor Programs III: Neural Matrix Laws
Tensor Programs III: Neural Matrix Laws
Greg Yang
19
44
0
22 Sep 2020
InClass Nets: Independent Classifier Networks for Nonparametric
  Estimation of Conditional Independence Mixture Models and Unsupervised
  Classification
InClass Nets: Independent Classifier Networks for Nonparametric Estimation of Conditional Independence Mixture Models and Unsupervised Classification
Konstantin T. Matchev
Prasanth Shyamsundar
CML
11
0
0
31 Aug 2020
Asymptotics of Wide Convolutional Neural Networks
Asymptotics of Wide Convolutional Neural Networks
Anders Andreassen
Ethan Dyer
22
23
0
19 Aug 2020
Neural Networks and Quantum Field Theory
Neural Networks and Quantum Field Theory
James Halverson
Anindita Maiti
Keegan Stoner
26
76
0
19 Aug 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a
  Multi-Scale Theory of Generalization
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
23
124
0
15 Aug 2020
Benign Overfitting and Noisy Features
Benign Overfitting and Noisy Features
Zhu Li
Weijie Su
Dino Sejdinovic
10
22
0
06 Aug 2020
Cold Posteriors and Aleatoric Uncertainty
Cold Posteriors and Aleatoric Uncertainty
Ben Adlam
Jasper Snoek
Samuel L. Smith
BDL
UQCV
26
23
0
31 Jul 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
28
208
0
31 Jul 2020
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
880
0
28 Jul 2020
From deep to Shallow: Equivalent Forms of Deep Networks in Reproducing
  Kernel Krein Space and Indefinite Support Vector Machines
From deep to Shallow: Equivalent Forms of Deep Networks in Reproducing Kernel Krein Space and Indefinite Support Vector Machines
A. Shilton
Sunil Gupta
Santu Rana
Svetha Venkatesh
19
0
0
15 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
14
116
0
11 Jul 2020
Characteristics of Monte Carlo Dropout in Wide Neural Networks
Characteristics of Monte Carlo Dropout in Wide Neural Networks
Joachim Sicking
Maram Akila
Tim Wirtz
Sebastian Houben
Asja Fischer
BDL
UQCV
12
6
0
10 Jul 2020
Doubly infinite residual neural networks: a diffusion process approach
Doubly infinite residual neural networks: a diffusion process approach
Stefano Peluchetti
Stefano Favaro
14
2
0
07 Jul 2020
On the Similarity between the Laplace and Neural Tangent Kernels
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
23
89
0
03 Jul 2020
Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural
  Network Initialization?
Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
ODL
30
13
0
02 Jul 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
Cengiz Pehlevan
19
13
0
30 Jun 2020
Uniform Priors for Data-Efficient Transfer
Uniform Priors for Data-Efficient Transfer
Samarth Sinha
Karsten Roth
Anirudh Goyal
Marzyeh Ghassemi
Hugo Larochelle
Animesh Garg
OOD
26
0
0
30 Jun 2020
Is SGD a Bayesian sampler? Well, almost
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
23
51
0
26 Jun 2020
The Gaussian equivalence of generative models for learning with shallow
  neural networks
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
58
135
0
25 Jun 2020
When Do Neural Networks Outperform Kernel Methods?
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
29
185
0
24 Jun 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
  Regression and Infinitely Wide Neural Networks
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
27
181
0
23 Jun 2020
Exact posterior distributions of wide Bayesian neural networks
Exact posterior distributions of wide Bayesian neural networks
Jiri Hron
Yasaman Bahri
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
23
27
0
18 Jun 2020
Infinite attention: NNGP and NTK for deep attention networks
Infinite attention: NNGP and NTK for deep attention networks
Jiri Hron
Yasaman Bahri
Jascha Narain Sohl-Dickstein
Roman Novak
16
113
0
18 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for
  linear-width neural networks
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
44
71
0
25 May 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
22
8
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Adversarial Robustness Guarantees for Random Deep Neural Networks
Adversarial Robustness Guarantees for Random Deep Neural Networks
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
21
8
0
13 Apr 2020
On the Neural Tangent Kernel of Deep Networks with Orthogonal
  Initialization
On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization
Wei Huang
Weitao Du
R. Xu
6
37
0
13 Apr 2020
Reinforcement Learning via Gaussian Processes with Neural Network Dual
  Kernels
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
I. Goumiri
Benjamin W. Priest
M. Schneider
GP
BDL
6
6
0
10 Apr 2020
Predicting the outputs of finite deep neural networks trained with noisy
  gradients
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
19
21
0
02 Apr 2020
Previous
12345678
Next