Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.11271
Cited By
Gaussian Process Behaviour in Wide Deep Neural Networks
30 April 2018
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Behaviour in Wide Deep Neural Networks"
50 / 391 papers shown
Title
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
Zhidi Lin
Yue Xu
Qinglei Kong
Deshi Li
Sergios Theodoridis
Shuguang Cui
Cui
FedML
21
4
0
08 Mar 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
13
710
0
07 Mar 2020
Stable behaviour of infinitely wide deep neural networks
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
17
28
0
01 Mar 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDL
GNN
42
17
0
26 Feb 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
42
54
0
25 Feb 2020
Avoiding Kernel Fixed Points: Computing with ELU and GELU Infinite Networks
Russell Tsuchida
Tim Pearce
Christopher van der Heide
Fred Roosta
M. Gallagher
8
8
0
20 Feb 2020
Robust Pruning at Initialization
Soufiane Hayou
Jean-François Ton
Arnaud Doucet
Yee Whye Teh
14
46
0
19 Feb 2020
Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width
Yu Bai
Ben Krause
Huan Wang
Caiming Xiong
R. Socher
22
22
0
10 Feb 2020
Quasi-Equivalence of Width and Depth of Neural Networks
Fenglei Fan
Rongjie Lai
Ge Wang
22
11
0
06 Feb 2020
On Random Kernels of Residual Architectures
Etai Littwin
Tomer Galanti
Lior Wolf
14
4
0
28 Jan 2020
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
32
47
0
21 Jan 2020
On Random Matrices Arising in Deep Neural Networks. Gaussian Case
L. Pastur
23
23
0
17 Jan 2020
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao
Jeffrey Pennington
S. Schoenholz
6
34
0
30 Dec 2019
Discriminative Clustering with Representation Learning with any Ratio of Labeled to Unlabeled Data
Corinne Jones
Vincent Roulet
Zaïd Harchaoui
36
1
0
30 Dec 2019
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
30
6
0
19 Dec 2019
Analytic expressions for the output evolution of a deep neural network
Anastasia Borovykh
14
0
0
18 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDL
FedML
16
0
0
02 Dec 2019
Richer priors for infinitely wide multi-layer perceptrons
Russell Tsuchida
Fred Roosta
M. Gallagher
6
10
0
29 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
21
131
0
03 Nov 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
193
0
28 Oct 2019
Explicitly Bayesian Regularizations in Deep Learning
Xinjie Lan
Kenneth Barner
UQCV
BDL
AI4CE
14
1
0
22 Oct 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
107
3
0
15 Oct 2019
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
33
28
0
14 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
27
9
0
12 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
39
87
0
30 Sep 2019
Wider Networks Learn Better Features
D. Gilboa
Guy Gur-Ari
15
7
0
25 Sep 2019
Neural networks are a priori biased towards Boolean functions with low entropy
Chris Mingard
Joar Skalse
Guillermo Valle Pérez
David Martínez-Rubio
Vladimir Mikulik
A. Louis
FAtt
AI4CE
27
37
0
25 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
29
113
0
25 Sep 2019
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
39
7
0
04 Sep 2019
On the Expressiveness of Approximate Inference in Bayesian Neural Networks
Andrew Y. K. Foong
David R. Burt
Yingzhen Li
Richard Turner
UQCV
BDL
17
20
0
02 Sep 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
24
71
0
28 Aug 2019
Finite size corrections for neural network Gaussian processes
J. Antognini
BDL
30
29
0
27 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
62
626
0
14 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
35
111
0
24 Jul 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
M. Wyart
17
17
0
19 Jun 2019
A General
O
(
n
2
)
\mathcal{O}(n^2)
O
(
n
2
)
Hyper-Parameter Optimization for Gaussian Process Regression with Cross-Validation and Non-linearly Constrained ADMM
Linning Xu
Feng Yin
Jiawei Zhang
Zhi-Quan Luo
Shuguang Cui
GP
44
0
0
06 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
42
122
0
05 Jun 2019
Bayesian Evidential Deep Learning with PAC Regularization
Manuel Haussmann
S. Gerwinn
M. Kandemir
UQCV
EDL
BDL
6
1
0
03 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
15
14
0
03 Jun 2019
Exact Convergence Rates of the Neural Tangent Kernel in the Large Depth Limit
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
16
4
0
31 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
28
253
0
29 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
14
31
0
27 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
27
18
0
27 May 2019
Sub-Weibull distributions: generalizing sub-Gaussian and sub-Exponential properties to heavier-tailed distributions
M. Vladimirova
Stéphane Girard
Hien Nguyen
Julyan Arbel
25
86
0
13 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
47
905
0
26 Apr 2019
Previous
1
2
3
4
5
6
7
8
Next