ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.04368
  4. Cited By
Regularisation of Neural Networks by Enforcing Lipschitz Continuity

Regularisation of Neural Networks by Enforcing Lipschitz Continuity

12 April 2018
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
ArXivPDFHTML

Papers citing "Regularisation of Neural Networks by Enforcing Lipschitz Continuity"

45 / 95 papers shown
Title
FRuDA: Framework for Distributed Adversarial Domain Adaptation
FRuDA: Framework for Distributed Adversarial Domain Adaptation
Shaoduo Gan
Akhil Mathur
Anton Isopoussu
F. Kawsar
N. Bianchi-Berthouze
Nicholas D. Lane
19
12
0
26 Dec 2021
Stable Long-Term Recurrent Video Super-Resolution
Stable Long-Term Recurrent Video Super-Resolution
Benjamin Naoto Chiche
Arnaud Woiselle
J. Frontera-Pons
Jean-Luc Starck
SupR
30
6
0
16 Dec 2021
Uncertainty Aware Proposal Segmentation for Unknown Object Detection
Uncertainty Aware Proposal Segmentation for Unknown Object Detection
Yimeng Li
Jana Kosecka
UQCV
36
19
0
25 Nov 2021
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in
  the Southeast Pacific
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific
Andrew Jesson
P. Manshausen
A. Douglas
D. Watson‐Parris
Y. Gal
P. Stier
AI4Cl
27
6
0
28 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
33
70
0
25 Oct 2021
Towards Robust Waveform-Based Acoustic Models
Towards Robust Waveform-Based Acoustic Models
Dino Oglic
Zoran Cvetkovic
Peter Sollich
Steve Renals
Bin Yu
OOD
AAML
23
1
0
16 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
An automatic differentiation system for the age of differential privacy
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
30
3
0
22 Sep 2021
Multiple shooting for training neural differential equations on time
  series
Multiple shooting for training neural differential equations on time series
Evren Mert Turan
J. Jäschke
AI4TS
40
23
0
14 Sep 2021
Robust Stability of Neural Network-controlled Nonlinear Systems with
  Parametric Variability
Robust Stability of Neural Network-controlled Nonlinear Systems with Parametric Variability
Soumyabrata Talukder
Ratnesh Kumar
13
7
0
13 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural
  Networks
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
32
51
0
18 Jun 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of
  GNN Explanation Methods
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
27
51
0
16 Jun 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
24
52
0
11 May 2021
Analytical bounds on the local Lipschitz constants of ReLU networks
Analytical bounds on the local Lipschitz constants of ReLU networks
Trevor Avant
K. Morgansen
FAtt
21
12
0
29 Apr 2021
Quaternion Generative Adversarial Networks
Quaternion Generative Adversarial Networks
Eleonora Grassucci
Edoardo Cicero
Danilo Comminiello
27
33
0
19 Apr 2021
Neural Network Robustness as a Verification Property: A Principled Case
  Study
Neural Network Robustness as a Verification Property: A Principled Case Study
Marco Casadio
Ekaterina Komendantskaya
M. Daggitt
Wen Kokke
Guy Katz
Guy Amir
Idan Refaeli
OOD
AAML
16
39
0
03 Apr 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
CLIP: Cheap Lipschitz Training of Neural Networks
CLIP: Cheap Lipschitz Training of Neural Networks
Leon Bungert
René Raab
Tim Roith
Leo Schwinn
Daniel Tenbrinck
32
32
0
23 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
Towards a Unified Framework for Fair and Stable Graph Representation
  Learning
Towards a Unified Framework for Fair and Stable Graph Representation Learning
Chirag Agarwal
Himabindu Lakkaraju
Marinka Zitnik
27
156
0
25 Feb 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
29
145
0
23 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
A Geometric Perspective on Self-Supervised Policy Adaptation
A Geometric Perspective on Self-Supervised Policy Adaptation
Cristian Bodnar
Karol Hausman
Gabriel Dulac-Arnold
Rico Jonschkowski
SSL
44
5
0
14 Nov 2020
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms
J. Hertrich
Sebastian Neumayer
Gabriele Steidl
19
57
0
04 Nov 2020
Enhancing Mixup-based Semi-Supervised Learning with Explicit Lipschitz
  Regularization
Enhancing Mixup-based Semi-Supervised Learning with Explicit Lipschitz Regularization
P. Gyawali
S. Ghimire
Linwei Wang
AAML
25
7
0
23 Sep 2020
Novel and flexible parameter estimation methods for data-consistent
  inversion in mechanistic modeling
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modeling
Timothy Rumbell
Jaimit Parikh
J. Kozloski
V. Gurev
8
5
0
17 Sep 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
37
437
0
17 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
25
28
0
02 Jun 2020
Joint Multi-Dimension Pruning via Numerical Gradient Update
Joint Multi-Dimension Pruning via Numerical Gradient Update
Zechun Liu
Xinming Zhang
Zhiqiang Shen
Zhe Li
Yichen Wei
Kwang-Ting Cheng
Jian Sun
47
19
0
18 May 2020
Training robust neural networks using Lipschitz bounds
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
19
156
0
06 May 2020
Fantastic Four: Differentiable Bounds on Singular Values of Convolution
  Layers
Fantastic Four: Differentiable Bounds on Singular Values of Convolution Layers
Sahil Singla
S. Feizi
AAML
27
7
0
22 Nov 2019
On the estimation of the Wasserstein distance in generative models
On the estimation of the Wasserstein distance in generative models
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
19
9
0
02 Oct 2019
Absum: Simple Regularization Method for Reducing Structural Sensitivity
  of Convolutional Neural Networks
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
Sekitoshi Kanai
Yasutoshi Ida
Yasuhiro Fujiwara
Masanori Yamada
S. Adachi
AAML
15
1
0
19 Sep 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
31
146
0
14 Aug 2019
Divide and Conquer: Leveraging Intermediate Feature Representations for
  Quantized Training of Neural Networks
Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural Networks
Ahmed T. Elthakeb
Prannoy Pilligundla
Alex Cloninger
H. Esmaeilzadeh
MQ
26
8
0
14 Jun 2019
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Ernest K. Ryu
Jialin Liu
Sicheng Wang
Xiaohan Chen
Zhangyang Wang
W. Yin
AI4CE
22
347
0
14 May 2019
Block Coordinate Regularization by Denoising
Block Coordinate Regularization by Denoising
Yu Sun
Jiaming Liu
Ulugbek S. Kamilov
30
82
0
13 May 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,992
0
08 Feb 2019
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
25
618
0
02 Nov 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced
  Engineering Design and Analysis
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
21
57
0
11 Oct 2018
Improved robustness to adversarial examples using Lipschitz regularization of the loss
Chris Finlay
Adam M. Oberman
B. Abbasi
24
34
0
01 Oct 2018
The Singular Values of Convolutional Layers
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
36
200
0
26 May 2018
Regularization via Mass Transportation
Regularization via Mass Transportation
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
Peyman Mohajerin Esfahani
OOD
27
203
0
27 Oct 2017
Previous
12