ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10573
23
3

An automatic differentiation system for the age of differential privacy

22 September 2021
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
ArXivPDFHTML
Abstract

We introduce Tritium, an automatic differentiation-based sensitivity analysis framework for differentially private (DP) machine learning (ML). Optimal noise calibration in this setting requires efficient Jacobian matrix computations and tight bounds on the L2-sensitivity. Our framework achieves these objectives by relying on a functional analysis-based method for sensitivity tracking, which we briefly outline. This approach interoperates naturally and seamlessly with static graph-based automatic differentiation, which enables order-of-magnitude improvements in compilation times compared to previous work. Moreover, we demonstrate that optimising the sensitivity of the entire computational graph at once yields substantially tighter estimates of the true sensitivity compared to interval bound propagation techniques. Our work naturally befits recent developments in DP such as individual privacy accounting, aiming to offer improved privacy-utility trade-offs, and represents a step towards the integration of accessible machine learning tooling with advanced privacy accounting systems.

View on arXiv
Comments on this paper