Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05296
Cited By
Stronger generalization bounds for deep nets via a compression approach
14 February 2018
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stronger generalization bounds for deep nets via a compression approach"
50 / 440 papers shown
Title
Adversarial Risk Bounds for Neural Networks through Sparsity based Compression
E. Balda
Arash Behboodi
Niklas Koep
R. Mathar
AAML
21
7
0
03 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience
Vaishnavh Nagarajan
J. Zico Kolter
24
100
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
37
383
0
30 May 2019
MaxiMin Active Learning in Overparameterized Model Classes}
Mina Karzand
Robert D. Nowak
14
20
0
29 May 2019
On the Generalization Gap in Reparameterizable Reinforcement Learning
Huan Wang
Stephan Zheng
Caiming Xiong
R. Socher
17
39
0
29 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
Implicit Rugosity Regularization via Data Augmentation
Daniel LeJeune
Randall Balestriero
Hamid Javadi
Richard G. Baraniuk
12
4
0
28 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
22
236
0
28 May 2019
Abstraction Mechanisms Predict Generalization in Deep Neural Networks
Alex Gain
H. Siegelmann
AI4CE
22
6
0
27 May 2019
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness
Pengzhan Jin
Lu Lu
Yifa Tang
George Karniadakis
14
60
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
22
124
0
27 May 2019
Identity Connections in Residual Nets Improve Noise Stability
Shuzhi Yu
Carlo Tomasi
11
6
0
27 May 2019
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Sandeep Subramanian
Ioannis Mitliagkas
Denis Kazakov
Yoshua Bengio
Michael C. Mozer
OOD
19
3
0
26 May 2019
How degenerate is the parametrization of neural networks with the ReLU activation function?
Julius Berner
Dennis Elbrächter
Philipp Grohs
ODL
33
28
0
23 May 2019
The role of invariance in spectral complexity-based generalization bounds
Konstantinos Pitas
Andreas Loukas
Mike Davies
P. Vandergheynst
BDL
14
1
0
23 May 2019
Fine-grained Optimization of Deep Neural Networks
Mete Ozay
ODL
16
1
0
22 May 2019
Revisiting hard thresholding for DNN pruning
Konstantinos Pitas
Mike Davies
P. Vandergheynst
AAML
20
2
0
21 May 2019
The sharp, the flat and the shallow: Can weakly interacting agents learn to escape bad minima?
N. Kantas
P. Parpas
G. Pavliotis
ODL
24
8
0
10 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Approximation and Non-parametric Estimation of ResNet-type Convolutional Neural Networks
Kenta Oono
Taiji Suzuki
35
58
0
24 Mar 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
21
158
0
07 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
40
61
0
06 Mar 2019
Implicit Regularization in Over-parameterized Neural Networks
M. Kubo
Ryotaro Banno
Hidetaka Manabe
Masataka Minoji
25
23
0
05 Mar 2019
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
14
18
0
05 Mar 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
17
310
0
13 Feb 2019
Identity Crisis: Memorization and Generalization under Extreme Overparameterization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Michael C. Mozer
Y. Singer
14
88
0
13 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
19
319
0
12 Feb 2019
Task2Vec: Task Embedding for Meta-Learning
Alessandro Achille
Michael Lam
Rahul Tewari
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Stefano Soatto
Pietro Perona
SSL
28
309
0
10 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
20
140
0
06 Feb 2019
Generalization Bounds For Unsupervised and Semi-Supervised Learning With Autoencoders
Baruch Epstein
Ron Meir
SSL
DRL
AI4CE
16
16
0
04 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
25
155
0
04 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
28
148
0
02 Feb 2019
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning
Jian Li
Xuanyuan Luo
Mingda Qiao
27
85
0
02 Feb 2019
Effect of Various Regularizers on Model Complexities of Neural Networks in Presence of Input Noise
Mayank Sharma
Aayush Yadav
Sumit Soman
Jayadeva Jayadeva
4
1
0
31 Jan 2019
Deep Learning for Inverse Problems: Bounds and Regularizers
Jaweria Amjad
Zhaoyang Lyu
M. Rodrigues
13
4
0
31 Jan 2019
Sample Complexity Bounds for Recurrent Neural Networks with Application to Combinatorial Graph Problems
Nil-Jana Akpinar
Bernhard Kratzwald
Stefan Feuerriegel
GNN
15
9
0
29 Jan 2019
Generalisation dynamics of online learning in over-parameterised neural networks
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
33
14
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks
Charles H. Martin
Michael W. Mahoney
15
55
0
24 Jan 2019
Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks using PAC-Bayesian Analysis
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
25
75
0
15 Jan 2019
How Compact?: Assessing Compactness of Representations through Layer-Wise Pruning
Hyun-Joo Jung
Jaedeok Kim
Yoonsuck Choe
16
1
0
09 Jan 2019
Improving Generalization of Deep Neural Networks by Leveraging Margin Distribution
Shen-Huan Lyu
Lu Wang
Zhi-Hua Zhou
30
11
0
27 Dec 2018
Towards a Theoretical Understanding of Hashing-Based Neural Nets
Yibo Lin
Zhao Song
Lin F. Yang
22
5
0
26 Dec 2018
Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?
Samet Oymak
Mahdi Soltanolkotabi
ODL
6
176
0
25 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
33
446
0
21 Nov 2018
Generalizable Adversarial Training via Spectral Normalization
Farzan Farnia
Jesse M. Zhang
David Tse
OOD
AAML
45
138
0
19 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
18
68
0
13 Nov 2018
Previous
1
2
3
4
5
6
7
8
9
Next