Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05296
Cited By
v1
v2
v3
v4 (latest)
Stronger generalization bounds for deep nets via a compression approach
14 February 2018
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stronger generalization bounds for deep nets via a compression approach"
50 / 444 papers shown
Title
An Investigation of how Label Smoothing Affects Generalization
Blair Chen
Liu Ziyin
Zihao Wang
Paul Pu Liang
UQCV
92
18
0
23 Oct 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Biwei Huang
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
83
29
0
22 Oct 2020
Learning Curves for Analysis of Deep Networks
Derek Hoiem
Tanmay Gupta
Zhizhong Li
Michal Shlapentokh-Rothman
87
26
0
21 Oct 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
104
11
0
16 Oct 2020
How does Weight Correlation Affect the Generalisation Ability of Deep Neural Networks
Gao Jin
Xinping Yi
Liang Zhang
Lijun Zhang
S. Schewe
Xiaowei Huang
88
42
0
12 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
121
252
0
09 Oct 2020
Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei
Kendrick Shen
Yining Chen
Tengyu Ma
SSL
133
232
0
07 Oct 2020
Improved generalization by noise enhancement
Takashi Mori
Masahito Ueda
52
3
0
28 Sep 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
122
43
0
27 Sep 2020
MSR-DARTS: Minimum Stable Rank of Differentiable Architecture Search
Kengo Machida
Kuniaki Uto
Koichi Shinoda
Taiji Suzuki
42
0
0
19 Sep 2020
Achieving Adversarial Robustness via Sparsity
Shu-Fan Wang
Ningyi Liao
Liyao Xiang
Nanyang Ye
Quanshi Zhang
AAML
58
16
0
11 Sep 2020
On Computability, Learnability and Extractability of Finite State Machines from Recurrent Neural Networks
Reda Marzouk
60
2
0
10 Sep 2020
Higher-order Quasi-Monte Carlo Training of Deep Neural Networks
M. Longo
Suman Mishra
T. Konstantin Rusch
Christoph Schwab
74
21
0
06 Sep 2020
HALO: Learning to Prune Neural Networks with Shrinkage
Skyler Seto
M. Wells
Wenyu Zhang
80
0
0
24 Aug 2020
Generalization Guarantees for Imitation Learning
Allen Z. Ren
Sushant Veer
Anirudha Majumdar
47
1
0
05 Aug 2020
Making Coherence Out of Nothing At All: Measuring the Evolution of Gradient Alignment
S. Chatterjee
Piotr Zielinski
59
8
0
03 Aug 2020
Generalization Comparison of Deep Neural Networks via Output Sensitivity
Mahsa Forouzesh
Farnood Salehi
Patrick Thiran
44
8
0
30 Jul 2020
Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems
Donsub Rim
Luca Venturi
Joan Bruna
Benjamin Peherstorfer
83
9
0
28 Jul 2020
From deep to Shallow: Equivalent Forms of Deep Networks in Reproducing Kernel Krein Space and Indefinite Support Vector Machines
A. Shilton
Sunil Gupta
Santu Rana
Svetha Venkatesh
38
0
0
15 Jul 2020
Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics
Taiji Suzuki
65
21
0
11 Jul 2020
Meta-Learning with Network Pruning
Hongduan Tian
Bo Liu
Xiaotong Yuan
Qingshan Liu
70
27
0
07 Jul 2020
Are Labels Always Necessary for Classifier Accuracy Evaluation?
Weijian Deng
Liang Zheng
74
118
0
06 Jul 2020
DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths
Yanwei Fu
Chen Liu
Donghao Li
Xinwei Sun
Jinshan Zeng
Yuan Yao
51
9
0
04 Jul 2020
Self-supervised Neural Architecture Search
Sapir Kaplan
Raja Giryes
SSL
75
12
0
03 Jul 2020
A Revision of Neural Tangent Kernel-based Approaches for Neural Networks
Kyungsu Kim
A. Lozano
Eunho Yang
AAML
105
0
0
02 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
112
173
0
29 Jun 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
90
53
0
26 Jun 2020
Continual Learning from the Perspective of Compression
Xu He
Min Lin
CLL
45
3
0
26 Jun 2020
A Limitation of the PAC-Bayes Framework
Roi Livni
Shay Moran
118
25
0
24 Jun 2020
Revisiting minimum description length complexity in overparameterized models
Raaz Dwivedi
Chandan Singh
Bin Yu
Martin J. Wainwright
83
5
0
17 Jun 2020
Using Wavelets and Spectral Methods to Study Patterns in Image-Classification Datasets
Roozbeh Yousefzadeh
Furong Huang
55
6
0
17 Jun 2020
Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks
Kenta Oono
Taiji Suzuki
AI4CE
149
32
0
15 Jun 2020
Tangent Space Sensitivity and Distribution of Linear Regions in ReLU Networks
Balint Daroczy
AAML
26
0
0
11 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
106
31
0
10 Jun 2020
Training with Multi-Layer Embeddings for Model Reduction
Benjamin Ghaemmaghami
Zihao Deng
B. Cho
Leo Orshansky
A. Singh
M. Erez
Michael Orshansky
3DV
54
10
0
10 Jun 2020
Exploring the Vulnerability of Deep Neural Networks: A Study of Parameter Corruption
Xu Sun
Zhiyuan Zhang
Xuancheng Ren
Ruixuan Luo
Liangyou Li
73
40
0
10 Jun 2020
Pruning neural networks without any data by iteratively conserving synaptic flow
Hidenori Tanaka
D. Kunin
Daniel L. K. Yamins
Surya Ganguli
270
652
0
09 Jun 2020
Pruning via Iterative Ranking of Sensitivity Statistics
Stijn Verdenius
M. Stol
Patrick Forré
AAML
91
38
0
01 Jun 2020
Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences
Siddhartha Mishra
T. Konstantin Rusch
89
50
0
26 May 2020
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
124
4
0
26 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
50
0
0
15 May 2020
Computing the Testing Error without a Testing Set
C. Corneanu
Meysam Madadi
Sergio Escalera
Aleix M. Martinez
AAML
69
71
0
01 May 2020
Local Lipschitz Bounds of Deep Neural Networks
Calypso Herrera
Florian Krach
Josef Teichmann
52
3
0
27 Apr 2020
Evolution of Q Values for Deep Q Learning in Stable Baselines
M. Andrews
Cemil Dibek
Karina Palyutina
40
3
0
24 Apr 2020
Deep Networks as Logical Circuits: Generalization and Interpretation
Christopher Snyder
S. Vishwanath
FAtt
AI4CE
28
2
0
25 Mar 2020
Hyperplane Arrangements of Trained ConvNets Are Biased
Matteo Gamba
S. Carlsson
Hossein Azizpour
Mårten Björkman
41
5
0
17 Mar 2020
Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale
Piotr Zielinski
Shankar Krishnan
S. Chatterjee
ODL
134
2
0
16 Mar 2020
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
143
144
0
12 Mar 2020
Analyzing Visual Representations in Embodied Navigation Tasks
Erik Wijmans
Julian Straub
Dhruv Batra
Irfan Essa
Judy Hoffman
Ari S. Morcos
82
2
0
12 Mar 2020
Wide-minima Density Hypothesis and the Explore-Exploit Learning Rate Schedule
Nikhil Iyer
V. Thejas
Nipun Kwatra
Ramachandran Ramjee
Muthian Sivathanu
112
29
0
09 Mar 2020
Previous
1
2
3
4
5
6
7
8
9
Next