Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04034
Cited By
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
12 February 2018
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks"
28 / 78 papers shown
Title
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
14
135
0
08 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
29
45
0
28 May 2020
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
19
156
0
06 May 2020
Safety-Aware Hardening of 3D Object Detection Neural Network Systems
Chih-Hong Cheng
3DPC
19
12
0
25 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks
Tsubasa Takahashi
GNN
AAML
13
37
0
19 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
36
3
0
10 Feb 2020
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring
Sibylle Hess
W. Duivesteijn
Decebal Constantin Mocanu
20
12
0
07 Jan 2020
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
30
6
0
20 Nov 2019
L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-grained Visual Categorization
Mina Basirat
P. Roth
16
8
0
27 Oct 2019
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
Sekitoshi Kanai
Yasutoshi Ida
Yasuhiro Fujiwara
Masanori Yamada
S. Adachi
AAML
17
1
0
19 Sep 2019
A Frobenius norm regularization method for convolutional kernels to avoid unstable gradient problem
Pei-Chang Guo
29
5
0
25 Jul 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
8
29
0
23 Jun 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Ernest K. Ryu
Jialin Liu
Sicheng Wang
Xiaohan Chen
Zhangyang Wang
W. Yin
AI4CE
22
347
0
14 May 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
19
57
0
20 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,992
0
08 Feb 2019
Improving MMD-GAN Training with Repulsive Loss Function
Wei Wang
Yuan Sun
Saman K. Halgamuge
GAN
17
79
0
24 Dec 2018
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
18
270
0
06 Dec 2018
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
25
618
0
02 Nov 2018
Evading classifiers in discrete domains with provable optimality guarantees
B. Kulynych
Jamie Hayes
N. Samarin
Carmela Troncoso
AAML
21
19
0
25 Oct 2018
Improved robustness to adversarial examples using Lipschitz regularization of the loss
Chris Finlay
Adam M. Oberman
B. Abbasi
24
34
0
01 Oct 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
18
62
0
11 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,838
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
Previous
1
2