Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03471
Cited By
v1
v2
v3
v4 (latest)
Certified Robustness to Adversarial Examples with Differential Privacy
9 February 2018
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Certified Robustness to Adversarial Examples with Differential Privacy"
50 / 567 papers shown
Title
Natural Language Understanding with Privacy-Preserving BERT
Chen Qu
Weize Kong
Liu Yang
Mingyang Zhang
Michael Bendersky
Marc Najork
103
76
0
15 Apr 2021
Simpler Certified Radius Maximization by Propagating Covariances
Xingjian Zhen
Rudrasis Chakraborty
Vikas Singh
AAML
40
5
0
13 Apr 2021
Practical Defences Against Model Inversion Attacks for Split Neural Networks
Tom Titcombe
A. Hall
Pavlos Papadopoulos
Daniele Romanini
FedML
68
58
0
12 Apr 2021
Fast Certified Robust Training with Short Warmup
Zhouxing Shi
Yihan Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
99
57
0
31 Mar 2021
Robustness Certification for Point Cloud Models
Tobias Lorenz
Anian Ruoss
Mislav Balunović
Gagandeep Singh
Martin Vechev
3DPC
101
26
0
30 Mar 2021
Certifiably-Robust Federated Adversarial Learning via Randomized Smoothing
Cheng Chen
B. Kailkhura
R. Goldhahn
Yi Zhou
AAML
FedML
64
16
0
30 Mar 2021
Understanding Generalization in Adversarial Training via the Bias-Variance Decomposition
Yaodong Yu
Zitong Yang
Yan Sun
Jacob Steinhardt
Yi-An Ma
64
17
0
17 Mar 2021
Improved, Deterministic Smoothing for L_1 Certified Robustness
Alexander Levine
Soheil Feizi
AAML
99
47
0
17 Mar 2021
Constant Random Perturbations Provide Adversarial Robustness with Minimal Effect on Accuracy
Bronya R. Chernyak
Bhiksha Raj
Tamir Hazan
Joseph Keshet
AAML
65
1
0
15 Mar 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
100
34
0
15 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
125
448
0
14 Mar 2021
DP-Image: Differential Privacy for Image Data in Feature Space
Hanyu Xue
Bo Liu
Ming Ding
Tianqing Zhu
Dayong Ye
Li Song
Wanlei Zhou
89
36
0
12 Mar 2021
Stochastic-HMDs: Adversarial Resilient Hardware Malware Detectors through Voltage Over-scaling
Md. Shohidul Islam
Ihsen Alouani
Khaled N. Khasawneh
AAML
41
1
0
11 Mar 2021
Revisiting Model's Uncertainty and Confidences for Adversarial Example Detection
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
AAML
155
29
0
09 Mar 2021
Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and Accuracy
Chong Chen
Kezhi Kong
Peihong Yu
J. Luque
Tom Goldstein
Furong Huang
AAML
64
8
0
07 Mar 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
95
93
0
05 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
105
45
0
05 Mar 2021
PointGuard: Provably Robust 3D Point Cloud Classification
Hongbin Liu
Jinyuan Jia
Neil Zhenqiang Gong
3DPC
123
75
0
04 Mar 2021
A Modified Drake Equation for Assessing Adversarial Risk to Machine Learning Models
Josh Kalin
David Noever
Matthew Ciolino
AAML
387
1
0
03 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
59
6
0
01 Mar 2021
On the robustness of randomized classifiers to adversarial examples
Rafael Pinot
Laurent Meunier
Florian Yger
Cédric Gouy-Pailler
Y. Chevaleyre
Jamal Atif
AAML
75
14
0
22 Feb 2021
Center Smoothing: Certified Robustness for Networks with Structured Outputs
Aounon Kumar
Tom Goldstein
OOD
AAML
UQCV
84
19
0
19 Feb 2021
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
162
131
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
Soheil Feizi
AAML
102
47
0
15 Feb 2021
Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons
Bohang Zhang
Tianle Cai
Zhou Lu
Di He
Liwei Wang
OOD
92
51
0
10 Feb 2021
Towards Bridging the gap between Empirical and Certified Robustness against Adversarial Examples
Jay Nandy
Sudipan Saha
Wynne Hsu
Mong Li Lee
Xiaosu Zhu
AAML
82
4
0
09 Feb 2021
Security and Privacy for Artificial Intelligence: Opportunities and Challenges
Ayodeji Oseni
Nour Moustafa
Helge Janicke
Peng Liu
Z. Tari
A. Vasilakos
AAML
67
52
0
09 Feb 2021
Efficient Certified Defenses Against Patch Attacks on Image Classifiers
J. H. Metzen
Maksym Yatsura
AAML
61
41
0
08 Feb 2021
DetectorGuard: Provably Securing Object Detectors against Localized Patch Hiding Attacks
Chong Xiang
Prateek Mittal
AAML
113
53
0
05 Feb 2021
ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine Learning Models
Yugeng Liu
Rui Wen
Xinlei He
A. Salem
Zhikun Zhang
Michael Backes
Emiliano De Cristofaro
Mario Fritz
Yang Zhang
AAML
106
133
0
04 Feb 2021
Adversarially Robust Learning with Unknown Perturbation Sets
Omar Montasser
Steve Hanneke
Nathan Srebro
AAML
85
28
0
03 Feb 2021
Understanding and Achieving Efficient Robustness with Adversarial Supervised Contrastive Learning
Anh-Vu Bui
Trung Le
He Zhao
Paul Montague
S. Çamtepe
Dinh Q. Phung
AAML
53
14
0
25 Jan 2021
DiPSeN: Differentially Private Self-normalizing Neural Networks For Adversarial Robustness in Federated Learning
Olakunle Ibitoye
M. O. Shafiq
Ashraf Matrawy
FedML
55
19
0
08 Jan 2021
Towards a Robust and Trustworthy Machine Learning System Development: An Engineering Perspective
Pulei Xiong
Scott Buffett
Shahrear Iqbal
Philippe Lamontagne
M. Mamun
Heather Molyneaux
OOD
81
15
0
08 Jan 2021
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients
Alessandro Cappelli
Ruben Ohana
Julien Launay
Laurent Meunier
Iacopo Poli
Florent Krzakala
AAML
131
13
0
06 Jan 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
107
3
0
04 Jan 2021
Robustness, Privacy, and Generalization of Adversarial Training
Fengxiang He
Shaopeng Fu
Bohan Wang
Dacheng Tao
125
10
0
25 Dec 2020
Adversarial Momentum-Contrastive Pre-Training
Cong Xu
Dan Li
Min Yang
SSL
74
15
0
24 Dec 2020
AWA: Adversarial Website Adaptation
A. M. Sadeghzadeh
Behrad Tajali
R. Jalili
AAML
69
20
0
20 Dec 2020
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
Basel Alomair
Aleksander Madry
Yue Liu
Tom Goldstein
SILM
144
283
0
18 Dec 2020
Robustness Threats of Differential Privacy
Nurislam Tursynbek
Aleksandr Petiushko
Ivan Oseledets
AAML
97
14
0
14 Dec 2020
Attack Agnostic Detection of Adversarial Examples via Random Subspace Analysis
Nathan G. Drenkow
Neil Fendley
Philippe Burlina
AAML
70
2
0
11 Dec 2020
DSRNA: Differentiable Search of Robust Neural Architectures
Ramtin Hosseini
Xingyi Yang
P. Xie
OOD
AAML
63
53
0
11 Dec 2020
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip Torr
Guohao Li
UQCV
110
35
0
08 Dec 2020
Learning to Separate Clusters of Adversarial Representations for Robust Adversarial Detection
Byunggill Joe
Jihun Hamm
Sung Ju Hwang
Sooel Son
I. Shin
AAML
OOD
57
0
0
07 Dec 2020
Advocating for Multiple Defense Strategies against Adversarial Examples
Alexandre Araujo
Laurent Meunier
Rafael Pinot
Benjamin Négrevergne
AAML
38
9
0
04 Dec 2020
How Robust are Randomized Smoothing based Defenses to Data Poisoning?
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Jihun Hamm
OOD
AAML
113
32
0
02 Dec 2020
Adversarial Robustness Across Representation Spaces
Pranjal Awasthi
George Yu
Chun-Sung Ferng
Andrew Tomkins
Da-Cheng Juan
OOD
AAML
83
11
0
01 Dec 2020
Robust and Private Learning of Halfspaces
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thao Nguyen
86
12
0
30 Nov 2020
Deterministic Certification to Adversarial Attacks via Bernstein Polynomial Approximation
Ching-Chia Kao
Jhe-Bang Ko
Chun-Shien Lu
AAML
55
1
0
28 Nov 2020
Previous
1
2
3
...
10
11
12
7
8
9
Next