ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.05743
27
58

Practical Defences Against Model Inversion Attacks for Split Neural Networks

12 April 2021
Tom Titcombe
A. Hall
Pavlos Papadopoulos
Daniele Romanini
    FedML
ArXivPDFHTML
Abstract

We describe a threat model under which a split network-based federated learning system is susceptible to a model inversion attack by a malicious computational server. We demonstrate that the attack can be successfully performed with limited knowledge of the data distribution by the attacker. We propose a simple additive noise method to defend against model inversion, finding that the method can significantly reduce attack efficacy at an acceptable accuracy trade-off on MNIST. Furthermore, we show that NoPeekNN, an existing defensive method, protects different information from exposure, suggesting that a combined defence is necessary to fully protect private user data.

View on arXiv
Comments on this paper