Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.03471
Cited By
v1
v2
v3
v4 (latest)
Certified Robustness to Adversarial Examples with Differential Privacy
9 February 2018
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Certified Robustness to Adversarial Examples with Differential Privacy"
50 / 567 papers shown
Title
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
99
32
0
15 Jun 2020
Defensive Approximation: Securing CNNs using Approximate Computing
Amira Guesmi
Ihsen Alouani
Khaled N. Khasawneh
M. Baklouti
T. Frikha
Mohamed Abid
Nael B. Abu-Ghazaleh
AAML
88
38
0
13 Jun 2020
D-square-B: Deep Distribution Bound for Natural-looking Adversarial Attack
Qiuling Xu
Guanhong Tao
Xiangyu Zhang
AAML
76
2
0
12 Jun 2020
On the Tightness of Semidefinite Relaxations for Certifying Robustness to Adversarial Examples
Richard Y. Zhang
AAML
65
26
0
11 Jun 2020
Deterministic Gaussian Averaged Neural Networks
Ryan Campbell
Chris Finlay
Adam M. Oberman
FedML
20
1
0
10 Jun 2020
Extensions and limitations of randomized smoothing for robustness guarantees
Jamie Hayes
AAML
62
21
0
07 Jun 2020
BUDS: Balancing Utility and Differential Privacy by Shuffling
Poushali Sengupta
Sudipta Paul
Subhankar Mishra
FedML
39
6
0
07 Jun 2020
Consistency Regularization for Certified Robustness of Smoothed Classifiers
Jongheon Jeong
Jinwoo Shin
AAML
86
88
0
07 Jun 2020
Pick-Object-Attack: Type-Specific Adversarial Attack for Object Detection
Omid Mohamad Nezami
Akshay Chaturvedi
Mark Dras
Utpal Garain
AAML
ObjD
61
19
0
05 Jun 2020
Towards Understanding Fast Adversarial Training
Bai Li
Shiqi Wang
Suman Jana
Lawrence Carin
AAML
78
50
0
04 Jun 2020
Second-Order Provable Defenses against Adversarial Attacks
Sahil Singla
Soheil Feizi
AAML
74
60
0
01 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
78
46
0
28 May 2020
Enhancing Certified Robustness via Smoothed Weighted Ensembling
Chizhou Liu
Yunzhen Feng
Ranran Wang
Bin Dong
AAML
80
12
0
19 May 2020
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
75
29
0
17 May 2020
Towards Assessment of Randomized Smoothing Mechanisms for Certifying Adversarial Robustness
Tianhang Zheng
Di Wang
Baochun Li
Jinhui Xu
AAML
24
0
0
15 May 2020
Towards Understanding the Adversarial Vulnerability of Skeleton-based Action Recognition
Tianhang Zheng
Sheng Liu
Changyou Chen
Junsong Yuan
Baochun Li
K. Ren
AAML
83
17
0
14 May 2020
Channel-Aware Adversarial Attacks Against Deep Learning-Based Wireless Signal Classifiers
Brian Kim
Y. Sagduyu
Kemal Davaslioglu
T. Erpek
S. Ulukus
AAML
89
119
0
11 May 2020
Provable Robust Classification via Learned Smoothed Densities
Saeed Saremi
R. Srivastava
AAML
88
3
0
09 May 2020
Towards Robustness against Unsuspicious Adversarial Examples
Liang Tong
Minzhe Guo
A. Prakash
Yevgeniy Vorobeychik
AAML
30
0
0
08 May 2020
Noisy Differentiable Architecture Search
Xiangxiang Chu
Bo Zhang
44
43
0
07 May 2020
Robustness Certification of Generative Models
M. Mirman
Timon Gehr
Martin Vechev
AAML
70
21
0
30 Apr 2020
Towards Feature Space Adversarial Attack
Qiuling Xu
Guanhong Tao
Shuyang Cheng
Xinming Zhang
GAN
AAML
66
25
0
26 Apr 2020
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
129
139
0
25 Apr 2020
SplitFed: When Federated Learning Meets Split Learning
Chandra Thapa
Pathum Chamikara Mahawaga Arachchige
S. Çamtepe
Lichao Sun
FedML
113
596
0
25 Apr 2020
Adversarial Robustness Guarantees for Random Deep Neural Networks
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
55
8
0
13 Apr 2020
Approximate Manifold Defense Against Multiple Adversarial Perturbations
Jay Nandy
Wynne Hsu
Mong Li Lee
AAML
65
12
0
05 Apr 2020
Evading Deepfake-Image Detectors with White- and Black-Box Attacks
Nicholas Carlini
Hany Farid
AAML
81
150
0
01 Apr 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
193
102
0
20 Mar 2020
Quantum noise protects quantum classifiers against adversaries
Yuxuan Du
Min-hsiu Hsieh
Tongliang Liu
Dacheng Tao
Nana Liu
AAML
78
112
0
20 Mar 2020
Breaking certified defenses: Semantic adversarial examples with spoofed robustness certificates
Amin Ghiasi
Ali Shafahi
Tom Goldstein
102
55
0
19 Mar 2020
RAB: Provable Robustness Against Backdoor Attacks
Maurice Weber
Xiaojun Xu
Bojan Karlas
Ce Zhang
Yue Liu
AAML
120
164
0
19 Mar 2020
Denoised Smoothing: A Provable Defense for Pretrained Classifiers
Hadi Salman
Mingjie Sun
Greg Yang
Ashish Kapoor
J. Zico Kolter
94
23
0
04 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
302
1,866
0
03 Mar 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
78
6
0
03 Mar 2020
Hidden Cost of Randomized Smoothing
Jeet Mohapatra
Ching-Yun Ko
Tsui-Wei Weng
Weng
Sijia Liu
Pin-Yu Chen
Luca Daniel
AAML
78
11
0
02 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
129
67
0
02 Mar 2020
Certified Defense to Image Transformations via Randomized Smoothing
Marc Fischer
Maximilian Baader
Martin Vechev
AAML
87
67
0
27 Feb 2020
TSS: Transformation-Specific Smoothing for Robustness Certification
Linyi Li
Maurice Weber
Xiaojun Xu
Luka Rimanic
B. Kailkhura
Tao Xie
Ce Zhang
Yue Liu
AAML
147
57
0
27 Feb 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
167
812
0
26 Feb 2020
Randomization matters. How to defend against strong adversarial attacks
Rafael Pinot
Raphael Ettedgui
Geovani Rizk
Y. Chevaleyre
Jamal Atif
AAML
130
60
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
69
406
0
26 Feb 2020
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks
Alexander Levine
Soheil Feizi
AAML
95
150
0
25 Feb 2020
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework
Dinghuai Zhang
Mao Ye
Chengyue Gong
Zhanxing Zhu
Qiang Liu
AAML
99
64
0
21 Feb 2020
Towards Certifiable Adversarial Sample Detection
Ilia Shumailov
Yiren Zhao
Robert D. Mullins
Ross J. Anderson
AAML
51
13
0
20 Feb 2020
Randomized Smoothing of All Shapes and Sizes
Greg Yang
Tony Duan
J. E. Hu
Hadi Salman
Ilya P. Razenshteyn
Jungshian Li
AAML
103
216
0
19 Feb 2020
Propose, Test, Release: Differentially private estimation with high probability
Victor-Emmanuel Brunel
Marco Avella-Medina
FedML
78
22
0
19 Feb 2020
Regularized Training and Tight Certification for Randomized Smoothed Classifier with Provable Robustness
Huijie Feng
Chunpeng Wu
Guoyang Chen
Weifeng Zhang
Y. Ning
AAML
71
11
0
17 Feb 2020
Stabilizing Differentiable Architecture Search via Perturbation-based Regularization
Xiangning Chen
Cho-Jui Hsieh
102
207
0
12 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
88
64
0
11 Feb 2020
Random Smoothing Might be Unable to Certify
ℓ
∞
\ell_\infty
ℓ
∞
Robustness for High-Dimensional Images
Avrim Blum
Travis Dick
N. Manoj
Hongyang R. Zhang
AAML
81
79
0
10 Feb 2020
Previous
1
2
3
...
10
11
12
9
Next