ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.09344
  4. Cited By
Certified Defenses against Adversarial Examples

Certified Defenses against Adversarial Examples

29 January 2018
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
    AAML
ArXivPDFHTML

Papers citing "Certified Defenses against Adversarial Examples"

50 / 250 papers shown
Title
Semantics Preserving Adversarial Learning
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
29
2
0
10 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor
  Search
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
L. V. D. van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
33
62
0
05 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
A Fundamental Performance Limitation for Adversarial Classification
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
33
8
0
04 Mar 2019
Robust Decision Trees Against Adversarial Examples
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
20
116
0
27 Feb 2019
Verification of Non-Linear Specifications for Neural Networks
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
14
43
0
25 Feb 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural
  Networks
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
21
263
0
23 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
26
59
0
22 Feb 2019
Graph Adversarial Training: Dynamically Regularizing Based on Graph
  Structure
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
Fuli Feng
Xiangnan He
Jie Tang
Tat-Seng Chua
OOD
AAML
34
218
0
20 Feb 2019
Fast Neural Network Verification via Shadow Prices
Fast Neural Network Verification via Shadow Prices
Vicencc Rubies-Royo
Roberto Calandra
D. Stipanović
Claire Tomlin
AAML
38
41
0
19 Feb 2019
Mitigation of Adversarial Examples in RF Deep Classifiers Utilizing
  AutoEncoder Pre-training
Mitigation of Adversarial Examples in RF Deep Classifiers Utilizing AutoEncoder Pre-training
S. Kokalj-Filipovic
Rob Miller
Nicholas Chang
Chi Leung Lau
AAML
14
36
0
16 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,995
0
08 Feb 2019
A New Family of Neural Networks Provably Resistant to Adversarial
  Attacks
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
27
2
0
01 Feb 2019
The Limitations of Adversarial Training and the Blind-Spot Attack
The Limitations of Adversarial Training and the Blind-Spot Attack
Huan Zhang
Hongge Chen
Zhao Song
Duane S. Boning
Inderjit S. Dhillon
Cho-Jui Hsieh
AAML
19
144
0
15 Jan 2019
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic
  Approach
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
Tsui-Wei Weng
Pin-Yu Chen
Lam M. Nguyen
M. Squillante
Ivan Oseledets
Luca Daniel
AAML
21
30
0
18 Dec 2018
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
55
553
0
13 Dec 2018
A randomized gradient-free attack on ReLU networks
A randomized gradient-free attack on ReLU networks
Francesco Croce
Matthias Hein
AAML
37
21
0
28 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
15
68
0
13 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
21
23
0
06 Nov 2018
Efficient Neural Network Robustness Certification with General
  Activation Functions
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
11
747
0
02 Nov 2018
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
30
166
0
01 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
27
82
0
29 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Certified Adversarial Robustness with Additive Noise
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Training for Faster Adversarial Robustness Verification via Inducing
  ReLU Stability
Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability
Kai Y. Xiao
Vincent Tjeng
Nur Muhammad (Mahi) Shafiullah
A. Madry
AAML
OOD
12
199
0
09 Sep 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided
  Fuzzing
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
Lei Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
43
40
0
04 Sep 2018
MLCapsule: Guarded Offline Deployment of Machine Learning as a Service
MLCapsule: Guarded Offline Deployment of Machine Learning as a Service
L. Hanzlik
Yang Zhang
Kathrin Grosse
A. Salem
Maximilian Augustin
Michael Backes
Mario Fritz
OffRL
16
103
0
01 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
522
0
21 Jun 2018
Gradient Adversarial Training of Neural Networks
Gradient Adversarial Training of Neural Networks
Ayan Sinha
Zhao Chen
Vijay Badrinarayanan
Andrew Rabinovich
AAML
30
33
0
21 Jun 2018
Monge blunts Bayes: Hardness Results for Adversarial Training
Monge blunts Bayes: Hardness Results for Adversarial Training
Zac Cranko
A. Menon
Richard Nock
Cheng Soon Ong
Zhan Shi
Christian J. Walder
AAML
26
16
0
08 Jun 2018
Towards the first adversarially robust neural network model on MNIST
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
Curriculum Adversarial Training
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
24
160
0
13 May 2018
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
25
785
0
30 Apr 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
25
473
0
28 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
19
96
0
20 Apr 2018
Adversarial Attacks Against Medical Deep Learning Systems
Adversarial Attacks Against Medical Deep Learning Systems
S. G. Finlayson
Hyung Won Chung
I. Kohane
Andrew L. Beam
SILM
AAML
OOD
MedIm
22
230
0
15 Apr 2018
Adversarial Logit Pairing
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
36
625
0
16 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
13
503
0
13 Mar 2018
Adversarial vulnerability for any classifier
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
33
248
0
23 Feb 2018
L2-Nonexpansive Neural Networks
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
25
74
0
22 Feb 2018
Security and Privacy Approaches in Mixed Reality: A Literature Survey
Security and Privacy Approaches in Mixed Reality: A Literature Survey
Jaybie A. de Guzman
Kanchana Thilakarathna
Aruna Seneviratne
26
132
0
15 Feb 2018
Generative Adversarial Perturbations
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
52
117
0
20 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
43
855
0
29 Oct 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
65
2,699
0
19 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
308
5,842
0
08 Jul 2016
Previous
12345