Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.09344
Cited By
Certified Defenses against Adversarial Examples
29 January 2018
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Certified Defenses against Adversarial Examples"
50 / 255 papers shown
Title
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
24
6
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
67
63
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
787
0
26 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
29
51
0
16 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
22
89
0
11 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
36
3
0
10 Feb 2020
Certified Robustness of Community Detection against Adversarial Structural Perturbation via Randomized Smoothing
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
83
83
0
09 Feb 2020
GhostImage: Remote Perception Attacks against Camera-based Image Classification Systems
Yanmao Man
Ming Li
Ryan M. Gerdes
AAML
19
8
0
21 Jan 2020
ReluDiff: Differential Verification of Deep Neural Networks
Brandon Paulsen
Jingbo Wang
Chao Wang
27
53
0
10 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
28
36
0
26 Dec 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
30
6
0
20 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
18
104
0
13 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities
H. S. M. Lim
Araz Taeihagh
24
82
0
29 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Adversarial Examples for Cost-Sensitive Classifiers
Mahdi Akbari Zarkesh
A. Lohn
Ali Movaghar
SILM
AAML
24
3
0
04 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
33
139
0
26 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
22
125
0
20 Sep 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
27
28
0
17 Jul 2019
Invariance-inducing regularization using worst-case transformations suffices to boost accuracy and spatial robustness
Fanny Yang
Zuowen Wang
C. Heinze-Deml
28
42
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
18
104
0
25 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
33
536
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
25
61
0
08 Jun 2019
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
34
42
0
07 Jun 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
40
21
0
30 May 2019
Adversarially Robust Learning Could Leverage Computational Hardness
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
AAML
20
24
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Robust Classification using Robust Feature Augmentation
Kevin Eykholt
Swati Gupta
Atul Prakash
Amir Rahmati
Pratik Vaishnavi
Haizhong Zheng
AAML
16
2
0
26 May 2019
Privacy Risks of Securing Machine Learning Models against Adversarial Examples
Liwei Song
Reza Shokri
Prateek Mittal
SILM
MIACV
AAML
6
235
0
24 May 2019
Testing DNN Image Classifiers for Confusion & Bias Errors
Yuchi Tian
Ziyuan Zhong
Vicente Ordonez
Gail E. Kaiser
Baishakhi Ray
24
52
0
20 May 2019
POPQORN: Quantifying Robustness of Recurrent Neural Networks
Ching-Yun Ko
Zhaoyang Lyu
Tsui-Wei Weng
Luca Daniel
Ngai Wong
Dahua Lin
AAML
17
75
0
17 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,227
0
29 Apr 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
50
68
0
06 Apr 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
49
829
0
05 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
32
75
0
25 Mar 2019
The Random Conditional Distribution for Higher-Order Probabilistic Inference
Zenna Tavares
Xin Zhang
Edgar Minaysan
Javier Burroni
Rajesh Ranganath
Armando Solar-Lezama
22
9
0
25 Mar 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
22
46
0
25 Mar 2019
The LogBarrier adversarial attack: making effective use of decision boundary information
Chris Finlay
Aram-Alexandre Pooladian
Adam M. Oberman
AAML
26
25
0
25 Mar 2019
Data Poisoning against Differentially-Private Learners: Attacks and Defenses
Yuzhe Ma
Xiaojin Zhu
Justin Hsu
SILM
25
157
0
23 Mar 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
27
14
0
23 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
21
57
0
20 Mar 2019
Previous
1
2
3
4
5
6
Next