ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14280
21
23

SPARQ-SGD: Event-Triggered and Compressed Communication in Decentralized Stochastic Optimization

31 October 2019
Navjot Singh
Deepesh Data
Jemin George
Suhas Diggavi
ArXivPDFHTML
Abstract

In this paper, we propose and analyze SPARQ-SGD, which is an event-triggered and compressed algorithm for decentralized training of large-scale machine learning models. Each node can locally compute a condition (event) which triggers a communication where quantized and sparsified local model parameters are sent. In SPARQ-SGD each node takes at least a fixed number (HHH) of local gradient steps and then checks if the model parameters have significantly changed compared to its last update; it communicates further compressed model parameters only when there is a significant change, as specified by a (design) criterion. We prove that the SPARQ-SGD converges as O(1nT)O(\frac{1}{nT})O(nT1​) and O(1nT)O(\frac{1}{\sqrt{nT}})O(nT​1​) in the strongly-convex and non-convex settings, respectively, demonstrating that such aggressive compression, including event-triggered communication, model sparsification and quantization does not affect the overall convergence rate as compared to uncompressed decentralized training; thereby theoretically yielding communication efficiency for "free". We evaluate SPARQ-SGD over real datasets to demonstrate significant amount of savings in communication over the state-of-the-art.

View on arXiv
Comments on this paper