Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.09268
Cited By
Generalizing Hamiltonian Monte Carlo with Neural Networks
25 November 2017
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalizing Hamiltonian Monte Carlo with Neural Networks"
41 / 41 papers shown
Title
Training neural control variates using correlated configurations
Hyunwoo Oh
BDL
35
0
0
12 May 2025
Training Neural Samplers with Reverse Diffusive KL Divergence
Jiajun He
Wenlin Chen
Mingtian Zhang
David Barber
José Miguel Hernández-Lobato
DiffM
37
4
0
16 Oct 2024
S
2
^2
2
AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic
Safa Messaoud
Billel Mokeddem
Zhenghai Xue
L. Pang
Bo An
Haipeng Chen
Sanjay Chawla
41
3
0
02 May 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
45
2
0
02 Oct 2023
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Michalis K. Titsias
35
11
0
23 May 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
45
4
0
21 Apr 2023
A Diffusion-based Method for Multi-turn Compositional Image Generation
Chao Wang
DiffM
33
3
0
05 Apr 2023
Toward Unlimited Self-Learning MCMC with Parallel Adaptive Annealing
Yuma Ichikawa
Akira Nakagawa
Hiromoto Masayuki
Yuhei Umeda
BDL
18
0
0
25 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
29
60
0
17 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
49
13
0
29 Sep 2022
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
32
77
0
03 Aug 2022
Enhanced gradient-based MCMC in discrete spaces
Benjamin Rhodes
Michael U. Gutmann
29
15
0
29 Jul 2022
Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time
Jun-Kun Wang
Andre Wibisono
27
9
0
05 Jul 2022
Parallel Tempering With a Variational Reference
Nikola Surjanovic
Saifuddin Syed
Alexandre Bouchard-Coté
Trevor Campbell
28
11
0
31 May 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
37
41
0
04 Dec 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
41
13
0
03 Nov 2021
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions
Chirag Modi
A. Barnett
Bob Carpenter
36
14
0
01 Oct 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
13
37
0
06 Jul 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
28
1
0
03 Jun 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
25
7
0
17 Mar 2021
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,944
0
06 Oct 2020
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
16
36
0
30 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
16,947
0
19 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
92
0
16 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
33
22
0
04 Nov 2019
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
215
0
30 Sep 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
29
11
0
24 Jul 2019
(
1
+
ε
)
(1 + \varepsilon)
(
1
+
ε
)
-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
M. Borisyak
Artem Sergeevich Ryzhikov
Andrey Ustyuzhanin
D. Derkach
Fedor Ratnikov
Olga Mineeva
7
4
0
14 Jun 2019
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
22
39
0
11 Jun 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
27
103
0
09 Mar 2019
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
26
13
0
16 Oct 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
44
0
12 Jun 2018
Deep Energy Estimator Networks
Saeed Saremi
Arash Mehrjou
Bernhard Schölkopf
Aapo Hyvarinen
14
73
0
21 May 2018
Conditional Inference in Pre-trained Variational Autoencoders via Cross-coding
Ga Wu
Justin Domke
Scott Sanner
BDL
DRL
21
11
0
20 May 2018
Modified Hamiltonian Monte Carlo for Bayesian inference
Tijana Radivojević
E. Akhmatskaya
14
31
0
13 Jun 2017
1