ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05772
  4. Cited By
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models

15 November 2017
Jesse Engel
Matthew Hoffman
Adam Roberts
    DRL
ArXivPDFHTML

Papers citing "Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models"

27 / 27 papers shown
Title
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
ScripTONES: Sentiment-Conditioned Music Generation for Movie Scripts
ScripTONES: Sentiment-Conditioned Music Generation for Movie Scripts
Vishruth Veerendranath
Vibha Masti
Utkarsh Gupta
Hrishit Chaudhuri
Gowri Srinivasa
25
1
0
13 Jan 2024
Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains
Maxime Di Folco
Cosmin I. Bercea
Julia A. Schnabel
28
0
0
24 Jul 2023
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained
  Generative Models
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models
Chen Henry Wu
Saman Motamed
Shaunak Srivastava
Fernando de la Torre
VLM
DiffM
21
34
0
14 Sep 2022
Diffusion models as plug-and-play priors
Diffusion models as plug-and-play priors
Alexandros Graikos
Nikolay Malkin
Nebojsa Jojic
Dimitris Samaras
DiffM
48
218
0
17 Jun 2022
Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
  and Application
Revisiting GANs by Best-Response Constraint: Perspective, Methodology, and Application
Risheng Liu
Jiaxin Gao
Xuan Liu
Xin-Yue Fan
37
4
0
20 May 2022
Explaining, Evaluating and Enhancing Neural Networks' Learned
  Representations
Explaining, Evaluating and Enhancing Neural Networks' Learned Representations
Marco Bertolini
Djork-Arné Clevert
F. Montanari
FAtt
14
5
0
18 Feb 2022
Differential-Critic GAN: Generating What You Want by a Cue of
  Preferences
Differential-Critic GAN: Generating What You Want by a Cue of Preferences
Yinghua Yao
Yuangang Pan
Ivor W. Tsang
Xin Yao
DiffM
28
0
0
14 Jul 2021
Pragmatic Image Compression for Human-in-the-Loop Decision-Making
Pragmatic Image Compression for Human-in-the-Loop Decision-Making
S. Reddy
Anca Dragan
Sergey Levine
OffRL
44
13
0
07 Jul 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
659
0
10 Jun 2021
Symbolic Music Generation with Diffusion Models
Symbolic Music Generation with Diffusion Models
Gautam Mittal
Jesse Engel
Curtis Hawthorne
Ian Simon
MGen
DiffM
57
190
0
30 Mar 2021
Plug and Play Autoencoders for Conditional Text Generation
Plug and Play Autoencoders for Conditional Text Generation
Florian Mai
Nikolaos Pappas
Ivan Montero
Noah A. Smith
U. Washington
25
36
0
06 Oct 2020
EvolGAN: Evolutionary Generative Adversarial Networks
EvolGAN: Evolutionary Generative Adversarial Networks
Baptiste Roziere
F. Teytaud
Vlad Hosu
Hanhe Lin
Jérémy Rapin
M. Zameshina
O. Teytaud
GAN
31
14
0
28 Sep 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
24
58
0
29 Jul 2020
Vector Quantized Contrastive Predictive Coding for Template-based Music
  Generation
Vector Quantized Contrastive Predictive Coding for Template-based Music Generation
Gaëtan Hadjeres
Léopold Crestel
34
18
0
21 Apr 2020
Guided Variational Autoencoder for Disentanglement Learning
Guided Variational Autoencoder for Disentanglement Learning
Zheng Ding
Yifan Xu
Weijian Xu
Gaurav Parmar
Yang Yang
Max Welling
Zhuowen Tu
DRL
CoGe
34
106
0
02 Apr 2020
Controlling generative models with continuous factors of variations
Controlling generative models with continuous factors of variations
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
DRL
30
127
0
28 Jan 2020
Encoding Musical Style with Transformer Autoencoders
Encoding Musical Style with Transformer Autoencoders
Kristy Choi
Curtis Hawthorne
Ian Simon
Monica Dinculescu
Jesse Engel
33
89
0
10 Dec 2019
Pre-train and Plug-in: Flexible Conditional Text Generation with
  Variational Auto-Encoders
Pre-train and Plug-in: Flexible Conditional Text Generation with Variational Auto-Encoders
Yu Duan
Canwen Xu
Jiaxin Pei
Jialong Han
Chenliang Li
24
42
0
10 Nov 2019
DualDis: Dual-Branch Disentangling with Adversarial Learning
DualDis: Dual-Branch Disentangling with Adversarial Learning
Thomas Robert
Nicolas Thome
Matthieu Cord
CoGe
DRL
27
4
0
03 Jun 2019
Human-Centered Tools for Coping with Imperfect Algorithms during Medical
  Decision-Making
Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making
Carrie J. Cai
Emily Reif
Narayan Hegde
J. Hipp
Been Kim
...
Martin Wattenberg
F. Viégas
G. Corrado
Martin C. Stumpe
Michael Terry
43
397
0
08 Feb 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
21
193
0
29 Jan 2019
Point Cloud GAN
Point Cloud GAN
Chun-Liang Li
Manzil Zaheer
Yang Zhang
Barnabás Póczós
Ruslan Salakhutdinov
3DPC
42
209
0
13 Oct 2018
Design by adaptive sampling
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
43
65
0
08 Oct 2018
Structured Disentangled Representations
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
OOD
CML
BDL
DRL
33
165
0
06 Apr 2018
A Hierarchical Latent Vector Model for Learning Long-Term Structure in
  Music
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music
Adam Roberts
Jesse Engel
Colin Raffel
Curtis Hawthorne
Douglas Eck
BDL
41
474
0
13 Mar 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,794
0
30 Nov 2017
1