ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05597
  4. Cited By
Advances in Variational Inference
v1v2v3 (latest)

Advances in Variational Inference

15 November 2017
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
    BDL
ArXiv (abs)PDFHTML

Papers citing "Advances in Variational Inference"

50 / 120 papers shown
Title
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
93
300
0
31 Oct 2016
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
77
116
0
27 Oct 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
165
62
0
18 Oct 2016
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
146
107
0
18 Oct 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
202
417
0
11 Oct 2016
The Generalized Reparameterization Gradient
The Generalized Reparameterization Gradient
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
BDL
111
169
0
07 Oct 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDLDRL
205
260
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
93
1,094
0
16 Aug 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
80
25
0
23 May 2016
Stick-Breaking Variational Autoencoders
Stick-Breaking Variational Autoencoders
Marco Cote
Padhraic Smyth
BDLDRL
130
163
0
20 May 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
146
47
0
03 Mar 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
107
87
0
16 Feb 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
113
486
0
10 Feb 2016
A Variational Analysis of Stochastic Gradient Algorithms
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
68
161
0
08 Feb 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
126
263
0
06 Feb 2016
Importance Sampling for Minibatches
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
103
116
0
06 Feb 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDLDRL
99
915
0
06 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
305
4,812
0
04 Jan 2016
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
99
186
0
20 Nov 2015
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
76
131
0
19 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
113
2,364
0
19 Nov 2015
Neural Variational Inference for Text Processing
Neural Variational Inference for Text Processing
Yishu Miao
Lei Yu
Phil Blunsom
VLMDRL
139
622
0
19 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDLAI4TS
77
374
0
16 Nov 2015
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
125
140
0
10 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
92
337
0
07 Nov 2015
Embarrassingly Parallel Variational Inference in Nonconjugate Models
Embarrassingly Parallel Variational Inference in Nonconjugate Models
Willie Neiswanger
Chong-Jun Wang
Eric Xing
142
16
0
14 Oct 2015
Stochastic gradient variational Bayes for gamma approximating
  distributions
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
132
51
0
04 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
280
1,246
0
01 Sep 2015
An Empirical Study of Stochastic Variational Algorithms for the Beta
  Bernoulli Process
An Empirical Study of Stochastic Variational Algorithms for the Beta Bernoulli Process
Amar Shah
David A. Knowles
Zoubin Ghahramani
BDL
28
8
0
26 Jun 2015
Variational Gaussian Copula Inference
Variational Gaussian Copula Inference
Shaobo Han
X. Liao
David B. Dunson
Lawrence Carin
90
56
0
19 Jun 2015
Bayesian Dark Knowledge
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDLUQCV
95
259
0
14 Jun 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
150
115
0
12 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
229
1,517
0
08 Jun 2015
A trust-region method for stochastic variational inference with
  applications to streaming data
A trust-region method for stochastic variational inference with applications to streaming data
Lucas Theis
Matthew D. Hoffman
64
43
0
28 May 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,197
0
21 May 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
89
95
0
06 Apr 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
281
6,801
0
19 Feb 2015
DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GANDRL
182
1,962
0
16 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Variational Tempering
Variational Tempering
Stephan Mandt
James McInerney
Farhan Abrol
Rajesh Ranganath
David M. Blei
BDL
82
56
0
07 Nov 2014
Stochastic Variational Inference for Hidden Markov Models
Stochastic Variational Inference for Hidden Markov Models
N. Foti
Jason Xu
Dillon Laird
E. Fox
BDL
91
93
0
06 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
131
2,269
0
30 Oct 2014
Smoothed Gradients for Stochastic Variational Inference
Smoothed Gradients for Stochastic Variational Inference
Stephan Mandt
David M. Blei
BDLDiffM
86
29
0
13 Jun 2014
Accelerating Minibatch Stochastic Gradient Descent using Stratified
  Sampling
Accelerating Minibatch Stochastic Gradient Descent using Stratified Sampling
P. Zhao
Tong Zhang
78
91
0
13 May 2014
Structured Stochastic Variational Inference
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
97
87
0
16 Apr 2014
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
86
150
0
06 Feb 2014
Stochastic Optimization with Importance Sampling
Stochastic Optimization with Importance Sampling
P. Zhao
Tong Zhang
115
346
0
13 Jan 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,167
0
31 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
458
16,922
0
20 Dec 2013
Previous
123
Next