ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05597
  4. Cited By
Advances in Variational Inference
v1v2v3 (latest)

Advances in Variational Inference

15 November 2017
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
    BDL
ArXiv (abs)PDFHTML

Papers citing "Advances in Variational Inference"

50 / 120 papers shown
Title
Generative Modeling of Class Probability for Multi-Modal Representation Learning
Generative Modeling of Class Probability for Multi-Modal Representation Learning
Jungkyoo Shin
Bumsoo Kim
Eunwoo Kim
94
1
0
21 Mar 2025
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Marcus Klasson
Talal Alrawajfeh
Mikko Heikkilä
Martin Trapp
UQCVBDL
213
2
0
27 Nov 2024
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Massimo Bilancia
Samuele Magro
67
0
0
29 Oct 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
Arnaud Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
121
0
0
10 Sep 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
452
3
0
05 Jun 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
80
0
0
16 Apr 2024
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
127
2
0
25 Oct 2023
Iterative Amortized Inference
Iterative Amortized Inference
Joseph Marino
Yisong Yue
Stephan Mandt
BDLDRL
76
168
0
24 Jul 2018
Quasi-Monte Carlo Variational Inference
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
99
60
0
04 Jul 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
170
271
0
13 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
85
128
0
28 May 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CEBDL
95
674
0
02 May 2018
Active Mini-Batch Sampling using Repulsive Point Processes
Active Mini-Batch Sampling using Repulsive Point Processes
Cheng Zhang
Cengiz Öztireli
Stephan Mandt
G. Salvi
39
36
0
08 Apr 2018
Variational Message Passing with Structured Inference Networks
Variational Message Passing with Structured Inference Networks
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
BDL
73
54
0
15 Mar 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
182
198
0
13 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
137
283
0
10 Jan 2018
Perturbative Black Box Variational Inference
Perturbative Black Box Variational Inference
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
BDL
66
40
0
21 Sep 2017
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
119
132
0
18 Sep 2017
ZhuSuan: A Library for Bayesian Deep Learning
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCVBDL
60
43
0
18 Sep 2017
Learning Model Reparametrizations: Implicit Variational Inference by
  Fitting MCMC distributions
Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions
Michalis K. Titsias
BDL
51
23
0
04 Aug 2017
Structured Black Box Variational Inference for Latent Time Series Models
Structured Black Box Variational Inference for Latent Time Series Models
Robert Bamler
Stephan Mandt
BDL
147
15
0
04 Jul 2017
The Numerics of GANs
The Numerics of GANs
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
103
456
0
30 May 2017
Reducing Reparameterization Gradient Variance
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
65
84
0
22 May 2017
Frequentist Consistency of Variational Bayes
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
139
208
0
09 May 2017
Stein Variational Adaptive Importance Sampling
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
126
28
0
18 Apr 2017
Multimodal Prediction and Personalization of Photo Edits with Deep
  Generative Models
Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models
A. Saeedi
Matthew D. Hoffman
S. DiVerdi
Asma Ghandeharioun
Matthew J. Johnson
Ryan P. Adams
DiffM
57
9
0
17 Apr 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
67
599
0
13 Apr 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDLFAtt
120
94
0
10 Apr 2017
Stein Variational Policy Gradient
Stein Variational Policy Gradient
Yang Liu
Prajit Ramachandran
Qiang Liu
Jian-wei Peng
75
140
0
07 Apr 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
272
282
0
21 Mar 2017
Faster Coordinate Descent via Adaptive Importance Sampling
Faster Coordinate Descent via Adaptive Importance Sampling
Dmytro Perekrestenko
Volkan Cevher
Martin Jaggi
75
42
0
07 Mar 2017
Autoencoding Variational Inference For Topic Models
Autoencoding Variational Inference For Topic Models
Akash Srivastava
Charles Sutton
BDLDRL
152
564
0
04 Mar 2017
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
86
158
0
28 Feb 2017
Dynamic Word Embeddings
Dynamic Word Embeddings
Robert Bamler
Stephan Mandt
BDL
225
232
0
27 Feb 2017
Approximate Inference with Amortised MCMC
Approximate Inference with Amortised MCMC
Yingzhen Li
Richard Turner
Qiang Liu
BDL
71
62
0
27 Feb 2017
Variational Inference using Implicit Distributions
Variational Inference using Implicit Distributions
Ferenc Huszár
DRLGAN
167
135
0
27 Feb 2017
Variational Policy for Guiding Point Processes
Variational Policy for Guiding Point Processes
Yichen Wang
Grady Williams
Evangelos Theodorou
Le Song
61
23
0
30 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GANBDL
146
530
0
17 Jan 2017
Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
148
110
0
15 Dec 2016
Adversarial Message Passing For Graphical Models
Adversarial Message Passing For Graphical Models
Theofanis Karaletsos
GAN
76
29
0
15 Dec 2016
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
130
1,728
0
01 Dec 2016
Two Methods For Wild Variational Inference
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
136
19
0
30 Nov 2016
Variational Boosting: Iteratively Refining Posterior Approximations
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
67
124
0
20 Nov 2016
Boosting Variational Inference
Boosting Variational Inference
Fangjian Guo
Xiangyu Wang
Kai Fan
Tamara Broderick
David B. Dunson
BDL
136
76
0
17 Nov 2016
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRLSSLBDL
88
340
0
15 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
170
676
0
08 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GANBDL
146
119
0
06 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
363
5,390
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
200
2,541
0
02 Nov 2016
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
140
35
0
01 Nov 2016
123
Next