ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02012
  4. Cited By
On Fairness and Calibration

On Fairness and Calibration

6 September 2017
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon M. Kleinberg
Kilian Q. Weinberger
    FaML
ArXivPDFHTML

Papers citing "On Fairness and Calibration"

34 / 184 papers shown
Title
Fair Data Adaptation with Quantile Preservation
Fair Data Adaptation with Quantile Preservation
Drago Plečko
N. Meinshausen
14
30
0
15 Nov 2019
Efficient Fair Principal Component Analysis
Efficient Fair Principal Component Analysis
Mohammad Mahdi Kamani
Farzin Haddadpour
R. Forsati
M. Mahdavi
13
36
0
12 Nov 2019
Auditing and Achieving Intersectional Fairness in Classification
  Problems
Auditing and Achieving Intersectional Fairness in Classification Problems
Giulio Morina
V. Oliinyk
J. Waton
Ines Marusic
K. Georgatzis
FaML
19
39
0
04 Nov 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
349
4,237
0
23 Aug 2019
The Role of Cooperation in Responsible AI Development
The Role of Cooperation in Responsible AI Development
Amanda Askell
Miles Brundage
Gillian Hadfield
33
60
0
10 Jul 2019
Learning Fair and Transferable Representations
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
37
19
0
25 Jun 2019
Mitigating Gender Bias in Natural Language Processing: Literature Review
Mitigating Gender Bias in Natural Language Processing: Literature Review
Tony Sun
Andrew Gaut
Shirlyn Tang
Yuxin Huang
Mai Elsherief
Jieyu Zhao
Diba Mirza
E. Belding-Royer
Kai-Wei Chang
William Yang Wang
AI4CE
47
543
0
21 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary
  Classification
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
19
85
0
12 Jun 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
45
79
0
12 Jun 2019
Maximum Weighted Loss Discrepancy
Maximum Weighted Loss Discrepancy
Fereshte Khani
Aditi Raghunathan
Percy Liang
23
16
0
08 Jun 2019
Does Object Recognition Work for Everyone?
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
Laurens van der Maaten
45
262
0
06 Jun 2019
Generative Adversarial Networks for Mitigating Biases in Machine
  Learning Systems
Generative Adversarial Networks for Mitigating Biases in Machine Learning Systems
Adel Abusitta
Esma Aïmeur
Omar Abdel Wahab
AI4CE
GAN
16
20
0
23 May 2019
Fair Classification and Social Welfare
Fair Classification and Social Welfare
Lily Hu
Yiling Chen
FaML
24
88
0
01 May 2019
Learning Fair Representations via an Adversarial Framework
Learning Fair Representations via an Adversarial Framework
Rui Feng
Yang Yang
Yuehan Lyu
Chenhao Tan
Yizhou Sun
Chunping Wang
FaML
25
55
0
30 Apr 2019
Calibration of Encoder Decoder Models for Neural Machine Translation
Calibration of Encoder Decoder Models for Neural Machine Translation
Aviral Kumar
Sunita Sarawagi
27
98
0
03 Mar 2019
Fairness in Recommendation Ranking through Pairwise Comparisons
Fairness in Recommendation Ranking through Pairwise Comparisons
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
...
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H. Chi
Cristos Goodrow
FaML
36
373
0
02 Mar 2019
Stable and Fair Classification
Stable and Fair Classification
Lingxiao Huang
Nisheeth K. Vishnoi
FaML
24
71
0
21 Feb 2019
Repairing without Retraining: Avoiding Disparate Impact with
  Counterfactual Distributions
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
Hao Wang
Berk Ustun
Flavio du Pin Calmon
FaML
36
83
0
29 Jan 2019
Identifying and Correcting Label Bias in Machine Learning
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
Ofir Nachum
FaML
14
281
0
15 Jan 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and
  Improvements
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
30
150
0
14 Jan 2019
Bias Mitigation Post-processing for Individual and Group Fairness
Bias Mitigation Post-processing for Individual and Group Fairness
P. Lohia
Karthikeyan N. Ramamurthy
M. Bhide
Diptikalyan Saha
Kush R. Varshney
Ruchir Puri
FaML
13
155
0
14 Dec 2018
Eliminating Latent Discrimination: Train Then Mask
Eliminating Latent Discrimination: Train Then Mask
Soheil Ghili
Ehsan Kazemi
Amin Karbasi
FaML
27
9
0
12 Nov 2018
A General Framework for Fair Regression
A General Framework for Fair Regression
Jack K. Fitzsimons
AbdulRahman Al Ali
Michael A. Osborne
Stephen J. Roberts
FaML
25
37
0
10 Oct 2018
From Soft Classifiers to Hard Decisions: How fair can we be?
From Soft Classifiers to Hard Decisions: How fair can we be?
R. Canetti
A. Cohen
Nishanth Dikkala
Govind Ramnarayan
Sarah Scheffler
Adam D. Smith
FaML
6
59
0
03 Oct 2018
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and
  Mitigating Unwanted Algorithmic Bias
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
Rachel K. E. Bellamy
Kuntal Dey
Michael Hind
Samuel C. Hoffman
Stephanie Houde
...
Diptikalyan Saha
P. Sattigeri
Moninder Singh
Kush R. Varshney
Yunfeng Zhang
FaML
SyDa
65
796
0
03 Oct 2018
Active Fairness in Algorithmic Decision Making
Active Fairness in Algorithmic Decision Making
Alejandro Noriega-Campero
Michiel A. Bakker
Bernardo Garcia-Bulle
Alex Pentland
FaML
19
85
0
28 Sep 2018
Classification with Fairness Constraints: A Meta-Algorithm with Provable
  Guarantees
Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees
L. E. Celis
Lingxiao Huang
Vijay Keswani
Nisheeth K. Vishnoi
FaML
66
302
0
15 Jun 2018
Causal Interventions for Fairness
Causal Interventions for Fairness
Matt J. Kusner
Chris Russell
Joshua R. Loftus
Ricardo M. A. Silva
FaML
24
14
0
06 Jun 2018
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
25
336
0
31 May 2018
Empirical Risk Minimization under Fairness Constraints
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
24
439
0
23 Feb 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
236
676
0
17 Feb 2018
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
Learning Optimized Risk Scores
Learning Optimized Risk Scores
Berk Ustun
Cynthia Rudin
17
82
0
01 Oct 2016
Fairness Constraints: Mechanisms for Fair Classification
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
114
49
0
19 Jul 2015
Previous
1234