Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.02012
Cited By
On Fairness and Calibration
6 September 2017
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon M. Kleinberg
Kilian Q. Weinberger
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Fairness and Calibration"
50 / 184 papers shown
Title
Just Train Twice: Improving Group Robustness without Training Group Information
E. Liu
Behzad Haghgoo
Annie S. Chen
Aditi Raghunathan
Pang Wei Koh
Shiori Sagawa
Percy Liang
Chelsea Finn
OOD
37
540
0
19 Jul 2021
Fairness in Ranking under Uncertainty
Ashudeep Singh
David Kempe
Thorsten Joachims
33
49
0
14 Jul 2021
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao
Michael P. Kim
Roshni Sahoo
Tengyu Ma
Stefano Ermon
20
55
0
12 Jul 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Multi-objective Asynchronous Successive Halving
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
32
24
0
23 Jun 2021
Characterizing the risk of fairwashing
Ulrich Aïvodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
23
27
0
14 Jun 2021
FairCal: Fairness Calibration for Face Verification
Tiago Salvador
Stephanie Cairns
Vikram S. Voleti
Noah Marshall
Adam M. Oberman
FaML
30
19
0
07 Jun 2021
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning
Yuyan Wang
Xuezhi Wang
Alex Beutel
Flavien Prost
Jilin Chen
Ed H. Chi
FaML
27
47
0
04 Jun 2021
Fair Preprocessing: Towards Understanding Compositional Fairness of Data Transformers in Machine Learning Pipeline
Sumon Biswas
Hridesh Rajan
26
112
0
02 Jun 2021
Bias, Fairness, and Accountability with AI and ML Algorithms
Neng-Zhi Zhou
Zach Zhang
V. Nair
Harsh Singhal
Jie Chen
Agus Sudjianto
FaML
21
9
0
13 May 2021
Improving Fairness of AI Systems with Lossless De-biasing
Yan Zhou
Murat Kantarcioglu
Chris Clifton
33
12
0
10 May 2021
Predicting Early Dropout: Calibration and Algorithmic Fairness Considerations
Marzieh Karimi-Haghighi
Carlos Castillo
Davinia Hernández Leo
Verónica Moreno Oliver
FaML
19
6
0
16 Mar 2021
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
27
14
0
22 Feb 2021
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
30
153
0
20 Feb 2021
Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information
Pranjal Awasthi
Alex Beutel
Matthaeus Kleindessner
Jamie Morgenstern
Xuezhi Wang
FaML
54
55
0
16 Feb 2021
The Limits of Computation in Solving Equity Trade-Offs in Machine Learning and Justice System Risk Assessment
J. Russell
FaML
14
0
0
08 Feb 2021
Through the Data Management Lens: Experimental Analysis and Evaluation of Fair Classification
Maliha Tashfia Islam
Anna Fariha
A. Meliou
Babak Salimi
FaML
30
25
0
18 Jan 2021
Deep Cox Mixtures for Survival Regression
Chirag Nagpal
Steve Yadlowsky
Negar Rostamzadeh
Katherine A. Heller
CML
44
59
0
16 Jan 2021
Characterizing Fairness Over the Set of Good Models Under Selective Labels
Amanda Coston
Ashesh Rambachan
Alexandra Chouldechova
FaML
30
82
0
02 Jan 2021
The Importance of Modeling Data Missingness in Algorithmic Fairness: A Causal Perspective
Naman Goel
Alfonso Amayuelas
Amit Deshpande
Ajay Sharma
FaML
41
29
0
21 Dec 2020
Exacerbating Algorithmic Bias through Fairness Attacks
Ninareh Mehrabi
Muhammad Naveed
Fred Morstatter
Aram Galstyan
AAML
30
67
0
16 Dec 2020
FairBatch: Batch Selection for Model Fairness
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
VLM
14
128
0
03 Dec 2020
Augmented Fairness: An Interpretable Model Augmenting Decision-Makers' Fairness
Tong Wang
M. Saar-Tsechansky
31
11
0
17 Nov 2020
Fairness in Biometrics: a figure of merit to assess biometric verification systems
Tiago de Freitas Pereira
S´ebastien Marcel
24
62
0
04 Nov 2020
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild
Zhe Zhang
Chunyu Wang
Weichao Qiu
Wenhu Qin
Wenjun Zeng
3DH
26
87
0
26 Oct 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
16
241
0
03 Sep 2020
Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic Multi-Objective Approach
Suyun Liu
Luis Nunes Vicente
FaML
29
68
0
03 Aug 2020
An Empirical Characterization of Fair Machine Learning For Clinical Risk Prediction
Stephen R. Pfohl
Agata Foryciarz
N. Shah
FaML
33
108
0
20 Jul 2020
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
28
61
0
18 Jul 2020
Ensuring Fairness Beyond the Training Data
Debmalya Mandal
Samuel Deng
Suman Jana
Jeannette M. Wing
Daniel J. Hsu
FaML
OOD
27
58
0
12 Jul 2020
Towards Threshold Invariant Fair Classification
Mingliang Chen
Min Wu
FaML
19
13
0
18 Jun 2020
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
16
57
0
18 Jun 2020
Fair Bayesian Optimization
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
K. Kenthapadi
Cédric Archambeau
FaML
27
84
0
09 Jun 2020
Statistical Equity: A Fairness Classification Objective
Ninareh Mehrabi
Yuzhong Huang
Fred Morstatter
FaML
20
10
0
14 May 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
64
84
0
08 May 2020
Ensuring Fairness under Prior Probability Shifts
Arpita Biswas
Suvam Mukherjee
OOD
24
33
0
06 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz
Gabriel Stanovsky
Swabha Swayamdipta
Jesse Dodge
Noah A. Smith
41
168
0
16 Apr 2020
Addressing multiple metrics of group fairness in data-driven decision making
M. Miron
Songül Tolan
Emilia Gómez
Carlos Castillo
FaML
19
8
0
10 Mar 2020
Counterfactual fairness: removing direct effects through regularization
Pietro G. Di Stefano
James M. Hickey
V. Vasileiou
FaML
17
19
0
25 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
24
78
0
24 Feb 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
33
386
0
21 Jan 2020
Keeping Community in the Loop: Understanding Wikipedia Stakeholder Values for Machine Learning-Based Systems
C. E. Smith
Bowen Yu
Anjali Srivastava
Aaron L Halfaker
Loren G. Terveen
Haiyi Zhu
KELM
21
69
0
14 Jan 2020
Fair Active Learning
Hadis Anahideh
Abolfazl Asudeh
Saravanan Thirumuruganathan
FaML
46
51
0
06 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics
Debjani Saha
Candice Schumann
Duncan C. McElfresh
John P. Dickerson
Michelle L. Mazurek
Michael Carl Tschantz
FaML
32
16
0
17 Dec 2019
Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy
Kaiyu Yang
Klint Qinami
Li Fei-Fei
Jia Deng
Olga Russakovsky
21
316
0
16 Dec 2019
Measurement and Fairness
Abigail Z. Jacobs
Hanna M. Wallach
14
381
0
11 Dec 2019
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation
Zeyu Wang
Klint Qinami
Yannis Karakozis
Kyle Genova
P. Nair
Kenji Hata
Olga Russakovsky
38
357
0
26 Nov 2019
Fairness With Minimal Harm: A Pareto-Optimal Approach For Healthcare
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
19
25
0
16 Nov 2019
Previous
1
2
3
4
Next