ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06135
11
155

Bias Mitigation Post-processing for Individual and Group Fairness

14 December 2018
P. Lohia
Karthikeyan N. Ramamurthy
M. Bhide
Diptikalyan Saha
Kush R. Varshney
Ruchir Puri
    FaML
ArXivPDFHTML
Abstract

Whereas previous post-processing approaches for increasing the fairness of predictions of biased classifiers address only group fairness, we propose a method for increasing both individual and group fairness. Our novel framework includes an individual bias detector used to prioritize data samples in a bias mitigation algorithm aiming to improve the group fairness measure of disparate impact. We show superior performance to previous work in the combination of classification accuracy, individual fairness and group fairness on several real-world datasets in applications such as credit, employment, and criminal justice.

View on arXiv
Comments on this paper