ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.07280
  4. Cited By
Learning Generalized Reactive Policies using Deep Neural Networks

Learning Generalized Reactive Policies using Deep Neural Networks

24 August 2017
E. Groshev
Maxwell Goldstein
Aviv Tamar
Siddharth Srivastava
Pieter Abbeel
ArXivPDFHTML

Papers citing "Learning Generalized Reactive Policies using Deep Neural Networks"

17 / 17 papers shown
Title
Imagination-Augmented Agents for Deep Reinforcement Learning
Imagination-Augmented Agents for Deep Reinforcement Learning
T. Weber
S. Racanière
David P. Reichert
Lars Buesing
A. Guez
...
Razvan Pascanu
Peter W. Battaglia
Demis Hassabis
David Silver
Daan Wierstra
LM&Ro
70
552
0
19 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
222
2,307
0
05 Jul 2017
Schema Networks: Zero-shot Transfer with a Generative Causal Model of
  Intuitive Physics
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics
Ken Kansky
Tom Silver
David A. Mély
Mohamed Eldawy
Miguel Lazaro-Gredilla
Xinghua Lou
N. Dorfman
Szymon Sidor
Scott Phoenix
Dileep George
AI4CE
65
233
0
14 Jun 2017
Learning Combinatorial Optimization Algorithms over Graphs
Learning Combinatorial Optimization Algorithms over Graphs
H. Dai
Elias Boutros Khalil
Yuyu Zhang
B. Dilkina
Le Song
90
1,453
0
05 Apr 2017
One-Shot Imitation Learning
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
61
684
0
21 Mar 2017
Combining Self-Supervised Learning and Imitation for Vision-Based Rope
  Manipulation
Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation
Ashvin Nair
Dian Chen
Pulkit Agrawal
Phillip Isola
Pieter Abbeel
Jitendra Malik
Sergey Levine
SSL
37
306
0
06 Mar 2017
The Predictron: End-To-End Learning and Planning
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
50
289
0
28 Dec 2016
From Perception to Decision: A Data-driven Approach to End-to-end Motion
  Planning for Autonomous Ground Robots
From Perception to Decision: A Data-driven Approach to End-to-end Motion Planning for Autonomous Ground Robots
Mark Pfeiffer
Michaela Schaeuble
Juan I. Nieto
Roland Siegwart
Cesar Cadena
68
380
0
26 Sep 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
322
37,704
0
20 May 2016
Value Iteration Networks
Value Iteration Networks
Aviv Tamar
Yi Wu
G. Thomas
Sergey Levine
Pieter Abbeel
61
650
0
09 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
850
149,474
0
22 Dec 2014
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
287
20,491
0
10 Sep 2014
The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks
The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks
Silvia Richter
Matthias Westphal
50
734
0
16 Jan 2014
Inductive Policy Selection for First-Order MDPs
Inductive Policy Selection for First-Order MDPs
S. Yoon
Alan Fern
R. Givan
48
94
0
12 Dec 2012
The Fast Downward Planning System
The Fast Downward Planning System
M. Helmert
49
1,895
0
27 Sep 2011
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
M. Fox
D. Long
70
2,168
0
22 Jun 2011
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
166
3,196
0
02 Nov 2010
1