ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.02949
  4. Cited By
Classification without labels: Learning from mixed samples in high
  energy physics

Classification without labels: Learning from mixed samples in high energy physics

9 August 2017
E. Metodiev
Benjamin Nachman
Jesse Thaler
    CML
ArXivPDFHTML

Papers citing "Classification without labels: Learning from mixed samples in high energy physics"

23 / 23 papers shown
Title
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum
  Likelihood Estimation
CURTAINs Flows For Flows: Constructing Unobserved Regions with Maximum Likelihood Estimation
Debasish Sengupta
Samuel Klein
J. A. Raine
T. Golling
OOD
29
27
0
08 May 2023
Weakly-Supervised Anomaly Detection in the Milky Way
Weakly-Supervised Anomaly Detection in the Milky Way
M. Pettee
Sowmya Thanvantri
Benjamin Nachman
David Shih
M. Buckley
J. Collins
21
7
0
05 May 2023
Anomalies, Representations, and Self-Supervision
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
39
9
0
11 Jan 2023
Resonant Anomaly Detection with Multiple Reference Datasets
Resonant Anomaly Detection with Multiple Reference Datasets
Mayee F. Chen
Benjamin Nachman
Frederic Sala
35
5
0
20 Dec 2022
Machine-Learned Exclusion Limits without Binning
Machine-Learned Exclusion Limits without Binning
E. Arganda
Andrés D. Pérez
M. D. L. Rios
Rosa María Sandá Seoane
43
9
0
09 Nov 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
49
113
0
07 Dec 2021
Towards a method to anticipate dark matter signals with deep learning at
  the LHC
Towards a method to anticipate dark matter signals with deep learning at the LHC
E. Arganda
A. Medina
A. D. Perez
A. Szynkman
22
7
0
25 May 2021
Autoencoders for unsupervised anomaly detection in high energy physics
Autoencoders for unsupervised anomaly detection in high energy physics
Thorben Finke
Michael Krämer
A. Morandini
A. Mück
I. Oleksiyuk
31
83
0
19 Apr 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
34
44
0
05 Apr 2021
Bump Hunting in Latent Space
Bump Hunting in Latent Space
Blaž Bortolato
B. Dillon
J. Kamenik
Aleks Smolkovič
DRL
39
43
0
11 Mar 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
37
33
0
18 Jan 2021
GPU coprocessors as a service for deep learning inference in high energy
  physics
GPU coprocessors as a service for deep learning inference in high energy physics
J. Krupa
Kelvin Lin
M. Acosta Flechas
Jack T. Dinsmore
Javier Mauricio Duarte
...
K. Pedro
D. Rankin
Natchanon Suaysom
Matthew Trahms
N. Tran
BDL
3DV
20
32
0
20 Jul 2020
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
32
14
0
17 Jul 2020
Machine Learning on data with sPlot background subtraction
Machine Learning on data with sPlot background subtraction
M. Borisyak
N. Kazeev
21
11
0
28 May 2019
Interpretable Deep Learning for Two-Prong Jet Classification with Jet
  Spectra
Interpretable Deep Learning for Two-Prong Jet Classification with Jet Spectra
A. Chakraborty
Sung Hak Lim
M. Nojiri
42
43
0
03 Apr 2019
ParticleNet: Jet Tagging via Particle Clouds
ParticleNet: Jet Tagging via Particle Clouds
H. Qu
L. Gouskos
3DPC
MU
30
229
0
22 Feb 2019
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN
3DPC
45
251
0
11 Oct 2018
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
Infrared Safety of a Neural-Net Top Tagging Algorithm
Infrared Safety of a Neural-Net Top Tagging Algorithm
Suyong Choi
Seung J. Lee
M. Perelstein
20
39
0
04 Jun 2018
Opening the black box of neural nets: case studies in stop/top
  discrimination
Opening the black box of neural nets: case studies in stop/top discrimination
Thomas Roxlo
M. Reece
21
22
0
24 Apr 2018
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
On the Topic of Jets: Disentangling Quarks and Gluons at Colliders
E. Metodiev
Jesse Thaler
34
71
0
31 Jan 2018
QCD-Aware Recursive Neural Networks for Jet Physics
QCD-Aware Recursive Neural Networks for Jet Physics
Gilles Louppe
Kyunghyun Cho
C. Becot
Kyle Cranmer
BDL
24
189
0
02 Feb 2017
1