ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01263
18
39

Infrared Safety of a Neural-Net Top Tagging Algorithm

4 June 2018
Suyong Choi
Seung J. Lee
M. Perelstein
ArXivPDFHTML
Abstract

Neural network-based algorithms provide a promising approach to jet classification problems, such as boosted top jet tagging. To date, NN-based top taggers demonstrated excellent performance in Monte Carlo studies. In this paper, we construct a top-jet tagger based on a Convolutional Neural Network (CNN), and apply it to parton-level boosted top samples, with and without an additional gluon in the final state. We show that the jet observable defined by the CNN obeys the canonical definition of infrared safety: it is unaffected by the presence of the extra gluon, as long as it is soft or collinear with one of the quarks. Our results indicate that the CNN tagger is robust with respect to possible mis-modeling of soft and collinear final-state radiation by Monte Carlo generators.

View on arXiv
Comments on this paper