Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.00075
Cited By
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
1 July 2017
Alex Beutel
Jilin Chen
Zhe Zhao
Ed H. Chi
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations"
50 / 95 papers shown
Title
FairZK: A Scalable System to Prove Machine Learning Fairness in Zero-Knowledge
Tianyu Zhang
Shen Dong
O. Deniz Kose
Yanning Shen
Wenjie Qu
FaML
58
0
0
12 May 2025
Causally Fair Node Classification on Non-IID Graph Data
Yucong Dai
Lu Zhang
Yaowei Hu
Susan Gauch
Yongkai Wu
FaML
50
0
0
03 May 2025
FedHERO: A Federated Learning Approach for Node Classification Task on Heterophilic Graphs
Zihan Chen
Xingbo Fu
Yushun Dong
Jundong Li
Cong Shen
FedML
69
0
0
29 Apr 2025
Fair Text Classification via Transferable Representations
Thibaud Leteno
Michael Perrot
Charlotte Laclau
Antoine Gourru
Christophe Gravier
FaML
88
0
0
10 Mar 2025
Graph Condensation: A Survey
Xin Gao
Junliang Yu
Wei Jiang
Tong Chen
Wentao Zhang
Hongzhi Yin
DD
106
19
0
28 Jan 2025
MAPPING: Debiasing Graph Neural Networks for Fair Node Classification with Limited Sensitive Information Leakage
Ying Song
Balaji Palanisamy
85
0
0
28 Jan 2025
Counterfactually Fair Reinforcement Learning via Sequential Data Preprocessing
Jitao Wang
C. Shi
John D. Piette
Joshua R. Loftus
Donglin Zeng
Zhenke Wu
OffRL
64
0
0
10 Jan 2025
Unbiased GNN Learning via Fairness-Aware Subgraph Diffusion
Abdullah Alchihabi
Yuhong Guo
DiffM
30
0
0
03 Jan 2025
Multi-Output Distributional Fairness via Post-Processing
Gang Li
Qihang Lin
Ayush Ghosh
Tianbao Yang
55
0
0
31 Aug 2024
Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning
Qi Qi
Quanqi Hu
Qihang Lin
Tianbao Yang
47
1
0
09 Jun 2024
Reproducibility study of FairAC
Gijs de Jong
Macha J. Meijer
Derck W. E. Prinzhorn
Harold Ruiter
34
0
0
05 Jun 2024
Fair MP-BOOST: Fair and Interpretable Minipatch Boosting
Camille Olivia Little
Genevera I. Allen
30
0
0
01 Apr 2024
Fair Supervised Learning with A Simple Random Sampler of Sensitive Attributes
Jinwon Sohn
Qifan Song
Guang Lin
FaML
40
1
0
10 Nov 2023
FairVision: Equitable Deep Learning for Eye Disease Screening via Fair Identity Scaling
Yan Luo
Muhammad Osama Khan
Yu Tian
Minfei Shi
Zehao Dou
T. Elze
Yi Fang
Mengyu Wang
17
7
0
03 Oct 2023
Should We Attend More or Less? Modulating Attention for Fairness
A. Zayed
Gonçalo Mordido
Samira Shabanian
Sarath Chandar
40
10
0
22 May 2023
Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection
Shadi Iskander
Kira Radinsky
Yonatan Belinkov
49
17
0
17 May 2023
Chasing Fairness Under Distribution Shift: A Model Weight Perturbation Approach
Zhimeng Jiang
Xiaotian Han
Hongye Jin
Guanchu Wang
Rui Chen
Na Zou
Xia Hu
17
13
0
06 Mar 2023
Fair Decision-making Under Uncertainty
Wenbin Zhang
Jeremy C. Weiss
45
38
0
29 Jan 2023
RISE: Robust Individualized Decision Learning with Sensitive Variables
Xiaoqing Ellen Tan
Zhengling Qi
C. Seymour
Lu Tang
OffRL
26
8
0
12 Nov 2022
Improving Fairness in Image Classification via Sketching
Ruichen Yao
Ziteng Cui
Xiaoxiao Li
Lin Gu
38
15
0
31 Oct 2022
A Differentiable Distance Approximation for Fairer Image Classification
Nicholas Rosa
Tom Drummond
Mehrtash Harandi
26
0
0
09 Oct 2022
Improving Data-Efficient Fossil Segmentation via Model Editing
Indu Panigrahi
Ryan Manzuk
A. Maloof
Ruth C. Fong
35
1
0
08 Oct 2022
Matching Consumer Fairness Objectives & Strategies for RecSys
Michael D. Ekstrand
M. S. Pera
FaML
32
3
0
06 Sep 2022
A Realism Metric for Generated LiDAR Point Clouds
Larissa T. Triess
Christoph B. Rist
David Peter
J. Marius Zöllner
3DPC
37
8
0
31 Aug 2022
FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive Learning
Siyi Du
Ben Hers
Nourhan Bayasi
Ghassan Hamarneh
Rafeef Garbi
27
21
0
22 Aug 2022
Multiple Attribute Fairness: Application to Fraud Detection
Meghanath Macha Yadagiri
S. Ravindran
Deepak Pai
A. Narang
V. Srivastava
35
1
0
28 Jul 2022
Transferring Fairness under Distribution Shifts via Fair Consistency Regularization
Bang An
Zora Che
Mucong Ding
Furong Huang
24
31
0
26 Jun 2022
FairNorm: Fair and Fast Graph Neural Network Training
Öykü Deniz Köse
Yanning Shen
AI4CE
21
4
0
20 May 2022
Learning Disentangled Textual Representations via Statistical Measures of Similarity
Pierre Colombo
Guillaume Staerman
Nathan Noiry
Pablo Piantanida
FaML
DRL
38
22
0
07 May 2022
FairNeuron: Improving Deep Neural Network Fairness with Adversary Games on Selective Neurons
Xuanqi Gao
Juan Zhai
Shiqing Ma
Chao Shen
Yufei Chen
Qianqian Wang
34
37
0
06 Apr 2022
Longitudinal Fairness with Censorship
Wenbin Zhang
Jeremy C. Weiss
25
40
0
30 Mar 2022
Is Fairness Only Metric Deep? Evaluating and Addressing Subgroup Gaps in Deep Metric Learning
Natalie Dullerud
Karsten Roth
Kimia Hamidieh
Nicolas Papernot
Marzyeh Ghassemi
37
15
0
23 Mar 2022
Robustness and Adaptation to Hidden Factors of Variation
William Paul
Philippe Burlina
29
0
0
03 Mar 2022
Fairness-aware Adversarial Perturbation Towards Bias Mitigation for Deployed Deep Models
Peng Kuang
Xiaowei Dong
Henry Xue
Zhifei Zhang
Weifeng Chiu
Tao Wei
Kui Ren
AAML
13
71
0
03 Mar 2022
Distributionally Robust Fair Principal Components via Geodesic Descents
Hieu Vu
Toan M. Tran
Man-Chung Yue
Viet Anh Nguyen
27
14
0
07 Feb 2022
Learning Fair Node Representations with Graph Counterfactual Fairness
Jing Ma
Ruocheng Guo
Mengting Wan
Longqi Yang
Aidong Zhang
Jundong Li
FaML
12
79
0
10 Jan 2022
Enhancing Model Robustness and Fairness with Causality: A Regularization Approach
Zhao Wang
Kai Shu
A. Culotta
OOD
21
14
0
03 Oct 2021
Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models
Yunhan Zheng
Shenhao Wang
Jinhuan Zhao
HAI
24
27
0
25 Sep 2021
Quantifying point cloud realism through adversarially learned latent representations
Larissa T. Triess
David Peter
Stefan A. Baur
J. Marius Zöllner
3DPC
34
2
0
24 Sep 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Boddeti
37
5
0
12 Sep 2021
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
37
20
0
01 Sep 2021
Addressing Algorithmic Disparity and Performance Inconsistency in Federated Learning
Sen Cui
Weishen Pan
Jian Liang
Changshui Zhang
Fei Wang
FedML
28
84
0
19 Aug 2021
EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks
Yushun Dong
Ninghao Liu
B. Jalaeian
Jundong Li
31
118
0
11 Aug 2021
Impossibility results for fair representations
Tosca Lechner
Shai Ben-David
Sushant Agarwal
Nivasini Ananthakrishnan
FaML
24
14
0
07 Jul 2021
Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics
Paula Czarnowska
Yogarshi Vyas
Kashif Shah
21
104
0
28 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
45
19
0
17 Jun 2021
Fairness-Aware Node Representation Learning
Öykü Deniz Köse
Yanning Shen
32
22
0
09 Jun 2021
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning
Yuyan Wang
Xuezhi Wang
Alex Beutel
Flavien Prost
Jilin Chen
Ed H. Chi
FaML
27
47
0
04 Jun 2021
Personalized Counterfactual Fairness in Recommendation
Yunqi Li
Hanxiong Chen
Shuyuan Xu
Yingqiang Ge
Yongfeng Zhang
FaML
OffRL
29
142
0
20 May 2021
Towards Equity and Algorithmic Fairness in Student Grade Prediction
Weijie Jiang
Z. Pardos
FaML
33
47
0
14 May 2021
1
2
Next