Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.00075
Cited By
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
1 July 2017
Alex Beutel
Jilin Chen
Zhe Zhao
Ed H. Chi
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations"
45 / 95 papers shown
Title
AI Fairness via Domain Adaptation
Neil J. Joshi
Philippe Burlina
29
15
0
15 Mar 2021
Estimating and Improving Fairness with Adversarial Learning
Xiaoxiao Li
Ziteng Cui
Yifan Wu
Li Gu
Tatsuya Harada
MedIm
35
38
0
07 Mar 2021
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
27
25
0
24 Feb 2021
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
25
22
0
12 Feb 2021
Towards Fair Deep Anomaly Detection
Hongjing Zhang
Ian Davidson
FaML
55
39
0
29 Dec 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
48
24
0
19 Nov 2020
On Transferability of Bias Mitigation Effects in Language Model Fine-Tuning
Xisen Jin
Francesco Barbieri
Brendan Kennedy
Aida Mostafazadeh Davani
Leonardo Neves
Xiang Ren
35
5
0
24 Oct 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
16
241
0
03 Sep 2020
Fairness-Aware Online Personalization
G. R. Lal
S. Geyik
K. Kenthapadi
FaML
13
3
0
30 Jul 2020
Adversarial representation learning for private speech generation
David Ericsson
Adam Östberg
Edvin Listo Zec
John Martinsson
Olof Mogren
27
16
0
16 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Fairness by Explicability and Adversarial SHAP Learning
James M. Hickey
Pietro G. Di Stefano
V. Vasileiou
FAtt
FedML
33
19
0
11 Mar 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
33
386
0
21 Jan 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
Stereotypical Bias Removal for Hate Speech Detection Task using Knowledge-based Generalizations
Pinkesh Badjatiya
Manish Gupta
Vasudeva Varma
17
105
0
15 Jan 2020
Fair Generative Modeling via Weak Supervision
Kristy Choi
Aditya Grover
Trisha Singh
Rui Shu
Stefano Ermon
36
133
0
26 Oct 2019
On the Global Optima of Kernelized Adversarial Representation Learning
Bashir Sadeghi
Runyi Yu
Vishnu Boddeti
AAML
67
31
0
16 Oct 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
30
106
0
16 Oct 2019
Avoiding Resentment Via Monotonic Fairness
G. W. Cole
Sinead Williamson
FaML
16
7
0
03 Sep 2019
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
33
173
0
28 Jul 2019
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
37
19
0
25 Jun 2019
Transfer of Machine Learning Fairness across Domains
Candice Schumann
Xuezhi Wang
Alex Beutel
Jilin Chen
Hai Qian
Ed H. Chi
35
69
0
24 Jun 2019
Mitigating Gender Bias in Natural Language Processing: Literature Review
Tony Sun
Andrew Gaut
Shirlyn Tang
Yuxin Huang
Mai Elsherief
Jieyu Zhao
Diba Mirza
E. Belding-Royer
Kai-Wei Chang
William Yang Wang
AI4CE
47
543
0
21 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
19
85
0
12 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
34
467
0
28 May 2019
Learning Fair Representations via an Adversarial Framework
Rui Feng
Yang Yang
Yuehan Lyu
Chenhao Tan
Yizhou Sun
Chunping Wang
FaML
25
55
0
30 Apr 2019
Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification
Daniel Borkan
Lucas Dixon
Jeffrey Scott Sorensen
Nithum Thain
Lucy Vasserman
42
473
0
11 Mar 2019
Fairness in Recommendation Ranking through Pairwise Comparisons
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
...
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H. Chi
Cristos Goodrow
FaML
36
373
0
02 Mar 2019
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
Ofir Nachum
FaML
14
281
0
15 Jan 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
30
150
0
14 Jan 2019
Fighting Fire with Fire: Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
Bashir Rastegarpanah
Krishna P. Gummadi
M. Crovella
24
119
0
02 Dec 2018
Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations
Tianlu Wang
Jieyu Zhao
Mark Yatskar
Kai-Wei Chang
Vicente Ordonez
FaML
34
17
0
20 Nov 2018
The Price of Fair PCA: One Extra Dimension
Samira Samadi
U. Tantipongpipat
Jamie Morgenstern
Mohit Singh
Santosh Vempala
FaML
22
154
0
31 Oct 2018
Discovering Fair Representations in the Data Domain
Novi Quadrianto
V. Sharmanska
Oliver Thomas
21
3
0
15 Oct 2018
Counterfactual Fairness in Text Classification through Robustness
Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H. Chi
Alex Beutel
22
258
0
27 Sep 2018
Adversarial Removal of Demographic Attributes from Text Data
Yanai Elazar
Yoav Goldberg
FaML
30
304
0
20 Aug 2018
Achieving Fairness through Adversarial Learning: an Application to Recidivism Prediction
C. Wadsworth
Francesca Vera
Chris Piech
FaML
25
180
0
30 Jun 2018
FairGAN: Fairness-aware Generative Adversarial Networks
Depeng Xu
Shuhan Yuan
Lu Zhang
Xintao Wu
GAN
33
306
0
28 May 2018
Fairness GAN
P. Sattigeri
Samuel C. Hoffman
Vijil Chenthamarakshan
Kush R. Varshney
18
93
0
24 May 2018
Probably Approximately Metric-Fair Learning
G. Rothblum
G. Yona
FaML
FedML
8
85
0
08 Mar 2018
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
24
439
0
23 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
676
0
17 Feb 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
23
1,365
0
22 Jan 2018
InclusiveFaceNet: Improving Face Attribute Detection with Race and Gender Diversity
Hee Jung Ryu
Hartwig Adam
Margaret Mitchell
FaML
20
30
0
01 Dec 2017
Previous
1
2