Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.07561
Cited By
A-NICE-MC: Adversarial Training for MCMC
23 June 2017
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A-NICE-MC: Adversarial Training for MCMC"
26 / 26 papers shown
Title
Score-Based Metropolis-Hastings Algorithms
Ahmed Aloui
Ali Hasan
Juncheng Dong
Zihao Wu
Vahid Tarokh
DiffM
34
0
0
31 Dec 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
34
2
0
02 Oct 2023
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Tim Schneider
A. Totounferoush
Wolfgang Nowak
Steffen Staab
16
0
0
14 Jun 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
31
4
0
21 Apr 2023
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model
Xingqian Xu
Zhangyang Wang
Eric Zhang
Kai Wang
Humphrey Shi
DiffM
28
181
0
15 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
26
33
0
14 Nov 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng
Yang Song
Wenzhe Li
Stefano Ermon
DiffM
8
44
0
08 Nov 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
20
1
0
03 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Orbital MCMC
Kirill Neklyudov
Max Welling
13
7
0
15 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
11
22
0
15 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,932
0
06 Oct 2020
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
8
36
0
30 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,901
0
19 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
8
92
0
16 Jun 2020
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
9
22
0
02 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
24
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
37
176
0
16 Feb 2020
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
21
22
0
04 Nov 2019
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
17
13
0
16 Oct 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
16
44
0
12 Jun 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
14
432
0
03 Apr 2018
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1