ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.07561
  4. Cited By
A-NICE-MC: Adversarial Training for MCMC

A-NICE-MC: Adversarial Training for MCMC

23 June 2017
Jiaming Song
Shengjia Zhao
Stefano Ermon
    BDL
    OOD
ArXivPDFHTML

Papers citing "A-NICE-MC: Adversarial Training for MCMC"

26 / 26 papers shown
Title
Score-Based Metropolis-Hastings Algorithms
Score-Based Metropolis-Hastings Algorithms
Ahmed Aloui
Ali Hasan
Juncheng Dong
Zihao Wu
Vahid Tarokh
DiffM
34
0
0
31 Dec 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
34
2
0
02 Oct 2023
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Tim Schneider
A. Totounferoush
Wolfgang Nowak
Steffen Staab
16
0
0
14 Jun 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
31
4
0
21 Apr 2023
Versatile Diffusion: Text, Images and Variations All in One Diffusion
  Model
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model
Xingqian Xu
Zhangyang Wang
Eric Zhang
Kai Wang
Humphrey Shi
DiffM
28
181
0
15 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
26
33
0
14 Nov 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
13
101
0
30 Nov 2021
Estimating High Order Gradients of the Data Distribution by Denoising
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng
Yang Song
Wenzhe Li
Stefano Ermon
DiffM
8
44
0
08 Nov 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
20
1
0
03 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
478
0
08 Mar 2021
Orbital MCMC
Orbital MCMC
Kirill Neklyudov
Max Welling
13
7
0
15 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
  and Learning
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
11
22
0
15 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,932
0
06 Oct 2020
Involutive MCMC: a Unifying Framework
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
8
36
0
30 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
116
16,901
0
19 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
8
92
0
16 Jun 2020
Batch Stationary Distribution Estimation
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
9
22
0
02 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
24
87
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
37
176
0
16 Feb 2020
Gradient-based Adaptive Markov Chain Monte Carlo
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
21
22
0
04 Nov 2019
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
17
13
0
16 Oct 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
16
44
0
12 Jun 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
14
432
0
03 Apr 2018
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1