ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.06383
  4. Cited By
Programmable Agents

Programmable Agents

20 June 2017
Misha Denil
Sergio Gomez Colmenarejo
Serkan Cabi
D. Saxton
Nando de Freitas
    AI4CE
ArXivPDFHTML

Papers citing "Programmable Agents"

13 / 13 papers shown
Title
HypRL: Reinforcement Learning of Control Policies for Hyperproperties
HypRL: Reinforcement Learning of Control Policies for Hyperproperties
Tzu-Han Hsu
Arshia Rafieioskouei
Borzoo Bonakdarpour
41
0
0
07 Apr 2025
SemSup: Semantic Supervision for Simple and Scalable Zero-shot
  Generalization
SemSup: Semantic Supervision for Simple and Scalable Zero-shot Generalization
Austin W. Hanjie
Ameet Deshpande
Karthik Narasimhan
VLM
36
2
0
26 Feb 2022
Learning Language-Conditioned Robot Behavior from Offline Data and
  Crowd-Sourced Annotation
Learning Language-Conditioned Robot Behavior from Offline Data and Crowd-Sourced Annotation
Suraj Nair
E. Mitchell
Kevin Chen
Brian Ichter
Silvio Savarese
Chelsea Finn
LM&Ro
OffRL
39
154
0
02 Sep 2021
Robust Counterfactual Explanations on Graph Neural Networks
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
43
96
0
08 Jul 2021
Discovering Generalizable Skills via Automated Generation of Diverse
  Tasks
Discovering Generalizable Skills via Automated Generation of Diverse Tasks
Kuan Fang
Yuke Zhu
Silvio Savarese
Li Fei-Fei
48
6
0
26 Jun 2021
How Attentive are Graph Attention Networks?
How Attentive are Graph Attention Networks?
Shaked Brody
Uri Alon
Eran Yahav
GNN
60
1,019
0
30 May 2021
Learning Compositional Neural Programs with Recursive Tree Search and
  Planning
Learning Compositional Neural Programs with Recursive Tree Search and Planning
Thomas Pierrot
Guillaume Ligner
Scott E. Reed
Olivier Sigaud
Nicolas Perrin
Alexandre Laterre
David Kas
Karim Beguir
Nando de Freitas
41
41
0
30 May 2019
Learning to Understand Goal Specifications by Modelling Reward
Learning to Understand Goal Specifications by Modelling Reward
Dzmitry Bahdanau
Felix Hill
Jan Leike
Edward Hughes
Seyedarian Hosseini
Pushmeet Kohli
Edward Grefenstette
24
157
0
05 Jun 2018
Relational Deep Reinforcement Learning
Relational Deep Reinforcement Learning
V. Zambaldi
David Raposo
Adam Santoro
V. Bapst
Yujia Li
...
Victoria Langston
Razvan Pascanu
M. Botvinick
Oriol Vinyals
Peter W. Battaglia
OffRL
24
219
0
05 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
121
3,087
0
04 Jun 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of
  Objects and their Interactions
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDL
OCL
DRL
34
290
0
28 Feb 2018
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
439
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
283
1,401
0
01 Dec 2016
1